Patents by Inventor Keith A. Couch

Keith A. Couch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11194301
    Abstract: A process for reducing pressure of a vapor stream wherein the vapor stream rotates a turbine wheel within the turbine to transmit rotational movement to an electrical generator and generate electricity. The resulting lower pressure vapor stream reduces a partial pressure of a hydrocarbon vapor or is injected into a reactor to reduce a temperature in the reactor. A recovered electric power measuring system comprises at least one processor; at least one memory storing computer-executable instructions; and at least one receiver configured to receive data from a sensor on an electrical powerline connected to a generator of a turbine, the turbine in fluid communication with a vapor stream wherein the turbine reduces the pressure of the vapor stream and the resulting lower pressure vapor stream is injected into a reactor to reduce a temperature in the reactor or to reduce a partial pressure of hydrocarbon vapor in the reactor.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: December 7, 2021
    Assignee: UOP LLC
    Inventors: Stanley J. Frey, Keith A. Couch, Donald A. Eizenga, James W. Harris, Thomas A. Ebner
  • Patent number: 10851315
    Abstract: Processes for the production of a gasoline blend. A C7 portion of a naphtha stream is first isomerized to increase the branched, iso-paraffins, and then, the isomerized effluent is passed to a dehydrogenation reaction zone. In the dehydrogenation zone, the C7 saturated hydrocarbons are convert to C7 olefins. The C7 olefins have a higher octane number than the C7 saturated hydrocarbons, and the branched olefins have a higher octane number than the normal olefins. The C7 olefins can be blended in a gasoline pool. C5 and C6 hydrocarbons can be isomerized and dehydrogenated as well, separately or with the C7 components.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: December 1, 2020
    Assignee: UOP LLC
    Inventors: Mark P. Lapinski, Rajeswar Gattupalli, Bryan K. Glover, Mohamed Shakur, Keith A. Couch, Michael W. Penninger, Soumendra Mohan Banerjee, Deepak Bisht, Gautam Pandey, Amit Sharma, Priyesh Jayendrakumar Jani, Nishesh Garg
  • Publication number: 20190286081
    Abstract: A process for reducing pressure of a vapor stream wherein the vapor stream rotates a turbine wheel within the turbine to transmit rotational movement to an electrical generator and generate electricity. The resulting lower pressure vapor stream reduces a partial pressure of a hydrocarbon vapor or is injected into a reactor to reduce a temperature in the reactor. A recovered electric power measuring system comprises at least one processor; at least one memory storing computer-executable instructions; and at least one receiver configured to receive data from a sensor on an electrical powerline connected to a generator of a turbine, the turbine in fluid communication with a vapor stream wherein the turbine reduces the pressure of the vapor stream and the resulting lower pressure vapor stream is injected into a reactor to reduce a temperature in the reactor or to reduce a partial pressure of hydrocarbon vapor in the reactor.
    Type: Application
    Filed: March 15, 2019
    Publication date: September 19, 2019
    Inventors: Stanley J. Frey, Keith A. Couch, Donald A. Eizenga, James W. Harris, Thomas A. Ebner
  • Patent number: 10214465
    Abstract: The present subject matter describes processes for increasing overall aromatics and xylenes yield in an aromatics complex. More specifically, the process for increasing overall aromatics and xylenes yield in an aromatics complex accomplishes the increased yields by incorporating an A8-A10 isomerization step into the aromatics complex. This isomerization integration increases the para-xylene.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: February 26, 2019
    Assignee: UOP LLC
    Inventors: Stanley J. Frey, Patrick C. Whitchurch, Keith A. Couch
  • Publication number: 20180273444
    Abstract: The present subject matter describes processes for increasing overall aromatics and xylenes yield in an aromatics complex. More specifically, the process for increasing overall aromatics and xylenes yield in an aromatics complex accomplishes the increased yields by incorporating an A8-A10 isomerization step into the aromatics complex. This isomerization integration increases the para-xylene.
    Type: Application
    Filed: May 31, 2018
    Publication date: September 27, 2018
    Inventors: Stanley J. Frey, Patrick C. Whitchurch, Keith A. Couch
  • Patent number: 9701913
    Abstract: A process for catalytic cracking includes the steps of: (a) contacting a hydrocarbon feed with a catalyst at catalytic cracking conditions; (b) adsorbing hydrogen on the catalyst during cracking; and (c) producing a cracked product, preferably propylene, wherein the catalyst comprises (i) a matrix, (ii) a catalytically active material, and (iii) a hydrogen adsorption material. Another process for catalytic cracking includes the steps of: (a) contacting a hydrocarbon feed with a catalyst at catalytic cracking conditions; (b) contacting the hydrocarbon feed with a hydrogen adsorption material; (c) adsorbing hydrogen on the hydrogen adsorption material during cracking; and (d) producing a cracked product, wherein the catalyst comprises (i) a matrix and (ii) a catalytically active material.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: July 11, 2017
    Assignee: UOP LLC
    Inventors: Matthew Lippmann, Alex A. Rio, Keith A. Couch
  • Patent number: 9328293
    Abstract: One exemplary embodiment can be a fluid catalytic cracking process. The process can include a reaction zone operating at conditions to facilitate olefin production and including at least one riser. The at least one riser can receive a first feed having a boiling point of about 180° to about 800° C., and a second feed having more than about 70%, by weight, of one or more C4+ olefins.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: May 3, 2016
    Assignee: UOP LLC
    Inventors: Robert L. Mehlberg, Keith A. Couch, Brian W. Hedrick, Zhihao Fei
  • Patent number: 9238209
    Abstract: An FCC process and apparatus may include injecting hydrocarbon feedstock at different radial positions while at the same elevation inside a riser. Multiple distributors may be used to position the tips for injecting feedstock at multiple radial positions. The distributors with tips more deeply positioned in the riser will penetrate a dense catalyst column we discovered generates in risers of larger diameter over 1.3 meters.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: January 19, 2016
    Assignee: UOP LLC
    Inventors: Keith A. Couch, Robert L. Mehlberg, Mohammad-Reza Mostofi-Ashtiani
  • Patent number: 9227167
    Abstract: An embodiment can be a process for catalytically cracking a hydrocarbon feed. The process can include providing the hydrocarbon feed including an effective amount of one or more C4-C6 olefins for producing at least one light olefin to a riser. Typically, at least about 99%, by mole, of the hydrocarbon feed is a gas.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: January 5, 2016
    Assignee: UOP LLC
    Inventors: Paolo Palmas, Robert L. Mehlberg, Keith A. Couch, Paul S. Nishimura
  • Publication number: 20150166431
    Abstract: A process for catalytic cracking includes the steps of: (a) contacting a hydrocarbon feed with a catalyst at catalytic cracking conditions; (b) adsorbing hydrogen on the catalyst during cracking; and (c) producing a cracked product, preferably propylene, wherein the catalyst comprises (i) a matrix, (ii) a catalytically active material, and (iii) a hydrogen adsorption material. Another process for catalytic cracking includes the steps of: (a) contacting a hydrocarbon feed with a catalyst at catalytic cracking conditions; (b) contacting the hydrocarbon feed with a hydrogen adsorption material; (c) adsorbing hydrogen on the hydrogen adsorption material during cracking; and (d) producing a cracked product, wherein the catalyst comprises (i) a matrix and (ii) a catalytically active material.
    Type: Application
    Filed: December 17, 2013
    Publication date: June 18, 2015
    Applicant: UOP LLC
    Inventors: Matthew Lippmann, Alex A. Rio, Keith A. Couch
  • Patent number: 8709235
    Abstract: Process for increasing mixing in a fluidized bed. A slide, which may be in the form of a tube or trough, transports particles from an upper zone downward to a lower zone at a different horizontal position, thereby changing the horizontal position of the particle and creating lateral mixing in the fluidized bed. Increased mixing may improve efficiency for an apparatus using a fluidized bed. For example, increased lateral mixing in a regenerator may increase temperature and oxygen mixing and reduce stagnation to improve efficiency. A slide may be relatively unobtrusive, inexpensive, and simple for a retrofit or design modification and may improve combustion efficiency at high rates by enhancing the lateral blending of spent and regenerated catalyst.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: April 29, 2014
    Assignee: UOP LLC
    Inventors: Brian W. Hedrick, Keith A. Couch, Robert L. Mehlberg, Mohammad-Reza Mostofi-Ashtiani
  • Patent number: 8691081
    Abstract: A process for distributing a deflecting media into an axial center of a riser to push catalyst outwardly toward the feed injectors ensures better contacting between hydrocarbon feed and catalyst.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: April 8, 2014
    Assignee: UOP LLC
    Inventors: Keith A. Couch, Paolo Palmas, Jason P. Lambin, Giovanni Spinelli
  • Patent number: 8575053
    Abstract: A process is provided for increasing mixing in a regenerator. Streamlines of gas and some catalyst may form in a regenerator as a result of cyclone inlet horns positioned in the same direction. Overall mixing in the regenerator may decrease because of these streamlines. A dampening device may be used to interrupt the streamlines and increase mixing in the regenerator. The dampening device may be a baffle and direct streamlines from the outside of the chamber toward the center to collide and mix. In another embodiment, a dampening device may be a secondary disengager such as a T-disengager or an inverted can arrangement that may discharge gas and catalyst near the center of the upper chamber and interrupt the streamlines. In another embodiment, a dampening device may have swirl arms that redirect stream lines counter to the direction of flow.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: November 5, 2013
    Assignee: UOP LLC
    Inventors: Robert L. Mehlberg, Mohammad-Reza Mostofi-Ashtiani, Keith A. Couch
  • Patent number: 8323477
    Abstract: A process for mixing regenerated and carbonized catalyst involves obstructing upward flow of catalyst by one or more baffles between a catalyst inlet and a feed distributor. Each catalyst stream may be passed to opposite sides of a riser. Baffles obstruct upward flow to effect mixing of regenerated and carbonized catalyst to obtain a more uniform temperature and catalyst mixture before contacting the feed.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: December 4, 2012
    Assignee: UOP LLC
    Inventors: Keith A. Couch, Kelly D. Seibert, Robert L. Mehlberg, Daniel R. Johnson
  • Patent number: 8124020
    Abstract: A process and apparatus is described in which a sulfiding agent is added to a catalytic conversion reactor to prevent metal catalyzed coking. The catalytic reactor may be downstream from a first fluid catalytic cracking reactor that provides C10— hydrocarbons as feed to the downstream catalytic reactor.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: February 28, 2012
    Assignee: UOP LLC
    Inventors: Keith A. Couch, Christopher D. Gosling
  • Patent number: 8124822
    Abstract: A process and apparatus is described in which a sulfiding agent is added to a catalytic conversion reactor to prevent metal catalyzed coking. The catalytic reactor may be downstream from a first fluid catalytic cracking reactor that provides C10-hydrocarbons as feed to the downstream catalytic reactor.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: February 28, 2012
    Assignee: UOP LLC
    Inventors: Keith A. Couch, Christopher D. Gosling
  • Patent number: 8062507
    Abstract: A process for stripping gases from catalyst material in which catalyst travels down baffles at a first acute angle and then at a second acute angle on the same baffle. Traveling down the baffle at the second angle assures the catalyst will cross a downcomer channel and land on an adjacent baffle.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: November 22, 2011
    Assignee: UOP LLC
    Inventors: Jason P. Lambin, Keith A. Couch, Paolo Palmas, Giovanni Spinelli
  • Publication number: 20110198267
    Abstract: An FCC process and apparatus may include injecting hydrocarbon feedstock at different radial positions while at the same elevation inside a riser. Multiple distributors may be used to position the tips for injecting feedstock at multiple radial positions. The distributors with tips more deeply positioned in the riser will penetrate a dense catalyst column we discovered generates in risers of larger diameter over 1.3 meters.
    Type: Application
    Filed: February 17, 2011
    Publication date: August 18, 2011
    Applicant: UOP LLC
    Inventors: Keith A. Couch, Robert L. Mehlberg, Mohammad-Reza Mostofi-Ashtiani
  • Patent number: 7972565
    Abstract: An apparatus for stripping gases from catalyst material comprises baffles having a second face that extends toward a downcomer channel between baffles to spread catalyst out on adjacent baffles for better contact with stripping gas.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: July 5, 2011
    Assignee: UOP LLC
    Inventors: Jason P. Lambin, Keith A. Couch, Paolo Palmas, Giovanni Spinelli
  • Patent number: 7947860
    Abstract: Processing schemes and arrangements for application of a dividing wall separation column in the processing of an effluent resulting from FCC processing modified for increased light olefin production. The dividing wall separation column desirably splits a naphtha feedstock produced or resulting from such modified FCC processing to produce or form a light fraction containing C5-C6 compounds, an intermediate fraction containing C7-C8 compounds and a heavy fraction containing C9+ compounds.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: May 24, 2011
    Assignee: UOP LLC
    Inventors: Michael A. Schultz, Keith A. Couch