Patents by Inventor Keith A. Cox

Keith A. Cox has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040210787
    Abstract: One embodiment of the present invention provides a system that facilitates selectively increasing the operating frequency of an electronic circuit, such as a computer system. The system begins by operating in a low-power state with the frequency and voltage of the electronic circuit set to low levels. Upon recognizing the need for performance beyond the low power level, the electronic circuit enters the first-intermediate power state. In this first-intermediate power state, the frequency and voltage are set to first-intermediate levels. Upon recognizing the need for performance beyond the first-intermediate power state, the electronic circuit enters the maximum-sustainable power state. In this power state, the frequency and voltage are set to maximum sustainable levels. Upon recognizing the need for performance beyond the maximum-sustainable power state, the electronic circuit temporarily enters a boosted power state beyond the maximum-sustainable power state.
    Type: Application
    Filed: May 3, 2004
    Publication date: October 21, 2004
    Inventors: Keith A. Cox, William C. Athas
  • Publication number: 20040199291
    Abstract: Generally, a method of determining a position of a robot is provided. In one embodiment, a method of determining a position of a robot comprises acquiring a first set of positional metrics, acquiring a second set of positional metrics and resolving the position of the robot due to thermal expansion using the first set and the second set of positional metrics. Acquiring the first and second set of positional metrics may occur at the same location within a processing system, or may occur at different locations. For example, in another embodiment, the method may comprise acquiring a first set of positional metrics at a first location proximate a processing chamber and acquiring a second set of positional metrics in another location. In another embodiment, substrate center information is corrected using the determined position of the robot.
    Type: Application
    Filed: April 3, 2003
    Publication date: October 7, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Marvin L. Freeman, Jeffrey C. Hudgens, Damon Keith Cox, Chris Holt Pencis, Michael Rice, David A. Van Gogh
  • Patent number: 6734579
    Abstract: A signaling circuit may be implemented with a connection comprised of signal lines having predefined signals and/or functions. The predefined signals and/or functions may be defined by an individual entity or standards organization. The signaling circuit transmits information not included in the predefined signals and/or functions. The information may be transmitted from a second device, such as a visual display screen, to a first device, such as a computing device, using at least one signal line in the connection. The information may include information about the state or status of the second device. The signaling circuit may, for example, activate, or turn on, the first device when a switch associated with the second device is depressed. Once the first device is activated, the signaling circuit may be disabled in order to allow the at least one signal line to be used for its predefined function.
    Type: Grant
    Filed: July 24, 2002
    Date of Patent: May 11, 2004
    Assignee: Apple Computer, Inc.
    Inventor: Keith A. Cox
  • Patent number: 6682113
    Abstract: The wafer clamping apparatus is disclosed including a cam rotatably coupled to a base plate. The cam is configured to couple with a robot arm. The clamping apparatus also includes a rotating clamp mechanism rotatably coupled to the base plate about a single fixed point. A biasing mechanism, coupled to the rotating clamp mechanism, urges the rotating clamp mechanism towards a clamped position. The rotating clamp mechanism is configured to interact with the cam to engage and disengage the rotating clamp mechanism from the clamped position. The rotating clamp mechanism preferably comprises a hub rotatably coupled to the base plate and a clamping arm and cam follower extending from the hub. The clamping arm is configured to clamp a wafer when the rotating clamp mechanism is in the clamped position, while the cam follower is configured to interact with the cam.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: January 27, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Damon Keith Cox, Venugopal Menon
  • Patent number: 6670807
    Abstract: The proximity sensor includes a magnetic field source (first object) configured to generate a magnetic field, a switch plate (second object) made from a ferrous material, and a magnetic field sensor (detector). The magnetic field source and the switch plate are moveable relative to each another. The magnetic field sensor is disposed close enough to the magnetic field source to detect the magnetic field. In use, when the magnetic field source and the switch plate come into proximity of each another, the magnetic field flows from the magnetic field source to the switch plate, thereby disabling detection of the magnetic field and signaling the proximity.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: December 30, 2003
    Assignee: Applied Materials, Inc.
    Inventor: Damon Keith Cox
  • Publication number: 20030132746
    Abstract: The proximity sensor includes a magnetic field source (first object) configured to generate a magnetic field, a switch plate (second object) made from a ferrous material, and a magnetic field sensor (detector). The magnetic field source and the switch plate are moveable relative to each another. The magnetic field sensor is disposed close enough to the magnetic field source to detect the magnetic field. In use, when the magnetic field source and the switch plate come into proximity of each another, the magnetic field flows from the magnetic field source to the switch plate, thereby disabling detection of the magnetic field and signaling the proximity.
    Type: Application
    Filed: January 16, 2002
    Publication date: July 17, 2003
    Applicant: Applied Materials, Inc.
    Inventor: Damon Keith Cox
  • Publication number: 20030094824
    Abstract: The wafer clamping apparatus is disclosed including a cam rotatably coupled to a base plate. The cam is configured to couple with a robot arm. The clamping apparatus also includes a rotating clamp mechanism rotatably coupled to the base plate about a single fixed point. A biasing mechanism, coupled to the rotating clamp mechanism, urges the rotating clamp mechanism towards a clamped position. The rotating clamp mechanism is configured to interact with the cam to engage and disengage the rotating clamp mechanism from the clamped position. The rotating clamp mechanism preferably comprises a hub rotatably coupled to the base plate and a clamping arm and cam follower extending from the hub. The clamping arm is configured to clamp a wafer when the rotating clamp mechanism is in the clamped position, while the cam follower is configured to interact with the cam.
    Type: Application
    Filed: November 16, 2001
    Publication date: May 22, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Damon Keith Cox, Venugopal Menon
  • Patent number: 6556887
    Abstract: Generally, a method of determining a position of a robot is provided. In one embodiment, a method of determining a position of a robot comprises acquiring a first set of positional metrics, acquiring a second set of positional metrics and resolving the position of the robot due to thermal expansion using the first set and the second set of positional metrics. Acquiring the first and second set of positional metrics may occur at the same location within a processing system, or may occur at different locations. For example, in another embodiment, the method may comprise acquiring a first set of positional metrics at a first location proximate a processing chamber and acquiring a second set of positional metrics in another location. In another embodiment, substrate center information is corrected using the determined position of the robot.
    Type: Grant
    Filed: July 12, 2001
    Date of Patent: April 29, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Marvin L. Freeman, Jeffrey C. Hudgens, Damon Keith Cox, Chris Holt Pencis, Michael Rice, David A. Van Gogh
  • Publication number: 20030014157
    Abstract: Generally, a method of determining a position of a robot is provided. In one embodiment, a method of determining a position of a robot comprises acquiring a first set of positional metrics, acquiring a second set of positional metrics and resolving the position of the robot due to thermal expansion using the first set and the second set of positional metrics. Acquiring the first and second set of positional metrics may occur at the same location within a processing system, or may occur at different locations. For example, in another embodiment, the method may comprise acquiring a first set of positional metrics at a first location proximate a processing chamber and acquiring a second set of positional metrics in another location. In another embodiment, substrate center information is corrected using the determined position of the robot.
    Type: Application
    Filed: July 12, 2001
    Publication date: January 16, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Marvin L. Freeman, Jeffrey C. Hudgens, Damon Keith Cox, Chris Holt Pencis, Michael Rice, David A. Van Gogh
  • Publication number: 20030014155
    Abstract: Generally, a robot for transferring a substrate in a processing system is provided. In one embodiment, a robot for transferring a substrate in a processing system includes a body, a linkage and an end effector that is adapted to retain the substrate thereon. The linkage couples the end effector to the body. The end effector and/or the linkage is comprised of a material having a coefficient of thermal expansion less than 5×10−6 K−1. In another embodiment, the end effector and/or the linkage is comprised of a material having a ratio of thermal conductivity/thermal expansion greater than 1×107 W/(m·K2). In yet another embodiment, the end effector and/or the linkage is comprised of a material having a ratio of thermal conductivity/thermal expansion greater than 1×107 W/(m·K2) and a fracture toughness greater than 1×106 Pa m0.5.
    Type: Application
    Filed: July 22, 2002
    Publication date: January 16, 2003
    Applicant: Applied Material, Inc.
    Inventors: Chris Holt Pencis, Jeffrey C. Hudgens, Damon Keith Cox, Michael Rice, James R. Ciulik
  • Publication number: 20030012631
    Abstract: Generally, a robot for transferring a substrate in a processing system is provided. In one embodiment, a robot for transferring a substrate in a processing system includes a body, a linkage and an end effector that is adapted to retain the substrate thereon. The linkage couples the end effector to the body. The end effector and/or the linkage is comprised of a material having a coefficient of thermal expansion less than about 5 m/(m×Kelvin). In another embodiment, the end effector and/or the linkage is comprised of a material having a ratio of thermal conductivity/thermal expansion greater than about 10 W/m(Kelvin)/(Kelvin). In yet another embodiment, the end effector and/or the linkage is comprised of a material having a ratio of thermal conductivity/thermal expansion greater than about 10 W/m(Kelvin)/(Kelvin) and a coefficient of fracture toughness less than about 1×106 Pa×m0.5.
    Type: Application
    Filed: August 13, 2001
    Publication date: January 16, 2003
    Inventors: Christopher H. Pencis, Jeffrey C. Hudgens, Damon Keith Cox, Michael Rice, James R. Ciulik
  • Publication number: 20030001535
    Abstract: The wafer clamping mechanism comprises a linkage mechanism and a wafer contact point coupled to the linkage mechanism. The linkage mechanism includes a four-bar linkage having: a first link having a first fixed pivot and a first floating pivot remote from the first fixed pivot; a second link having a second fixed pivot and a second floating pivot remote from the second fixed pivot; and a third link having a first coupling pivot rotatably coupled to the first floating pivot, and having a second coupling pivot rotatably coupled to the second floating pivot. In use motion of the linkage mechanism causes the wafer contact point to clamp a wafer.
    Type: Application
    Filed: June 28, 2001
    Publication date: January 2, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Venugopal Menon, Damon Keith Cox
  • Patent number: 4975245
    Abstract: A recirculating high velocity hot air sterilization device includes a housing having a chamber therein. A corrugated, perforated jet curtain plate is disposed within the chamber and partially defines an air supply plenum positioned outwardly of the chamber, the plenum having an electric heating element operatively positioned therein. Spaced apart from the jet curtain plate within the chamber is a nonperforated deflector plate which extends parallel to the jet curtain plate and may be of a flat or corrugated configuration. A blower is connected to the housing and creates therein a recirculating flow of heated air which sequentially flows into the air supply plenum across the heating element, outwardly in a forward direction through the perforations in the jet curtain plate and into the housing chamber, back into the blower, and then into the air supply plenum.
    Type: Grant
    Filed: September 12, 1989
    Date of Patent: December 4, 1990
    Assignee: Archer Aire Industries, Inc.
    Inventors: Virgil L. Archer, M. Keith Cox
  • Patent number: 4923681
    Abstract: An automatically controlled recirculating high velocity hot air sterilization device includes a housing having a sterilization chamber with a temperature sensor mounted therein, a hot air plenum including a blower in fluid communication with a heating element and sterilization chamber for inputting hor air into and receiving hot air from the sterilization chamber for recirculation, and a control chamber having a temperature sensing circuit connected to the temperature circuit for producing electrical inputs representative of the sterilization chamber temperature, power circuits connected to the heating element and blower, a controller connected to the temperature sensing circuit for monitoring the temperature, and to the heating element and blower circuits for controlling their operation, and a control panel including cycle selection switches for operation, an on/off switch, and temperature and timer/error displays.
    Type: Grant
    Filed: October 22, 1987
    Date of Patent: May 8, 1990
    Assignee: ArcherAire Industries, Inc.
    Inventors: M. Keith Cox, William E. Davidson
  • Patent number: 4894207
    Abstract: A recirculating high velocity hot air sterilization device includes a housing having a chamber therein. A corrugated, perforated jet curtain plate is disposed within the chamber and partially defines an air supply plenum positioned outwardly of the chamber, the plenum having an electric heating element operatively positioned therein. Spaced apart from the jet curtain plate within the chamber is a nonperforated deflector plate which extends parallel to the jet curtain plate and may be of a flat or corrugated configuration. A blower is connected to the housing and creates therein a recirculating flow of heated air which sequentially flows into the air supply plenum across the heating element, outwardly in a forward direction through the perforations in the jet curtain plate and into the housing chamber, back into the blower, and then into the air supply plenum.
    Type: Grant
    Filed: February 10, 1989
    Date of Patent: January 16, 1990
    Assignee: Archer Aire Industries, Inc.
    Inventors: Virgil L. Archer, M. Keith Cox
  • Patent number: 4824644
    Abstract: A recirculating, high velocity hot impingement air sterilizer has an inner housing that defines a chamber adapted to receive dental instruments or the like to be sterilized by hot impingement air jets flowed through the chamber by a compact fan, duct and heating coil assembly exteriorly secured to the inner housing. A specially designed insulating jacket structure envelopes and removably receives the inner housing, the jacket structure having a flexible, hollow outer skin portion filled with and captively retaining a suitable insulating material. The jacketed inner housing is received within an outer housing and defines therein a cooling space which extends around a major portion of the insulating jacket structure. Cooling air is flowed through such cooling space by a small fan secured to the inner surface of a removable back panel portion of the outer housing.
    Type: Grant
    Filed: October 8, 1987
    Date of Patent: April 25, 1989
    Assignee: Archeraire Industries, Inc.
    Inventors: M. Keith Cox, Virgil L. Archer