Patents by Inventor Keith Armstrong
Keith Armstrong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250046812Abstract: Secondary batteries and methods of manufacture thereof are provided. A secondary battery can comprise an offset between electrode and counter-electrode layers in a unit cell. Secondary batteries can be prepared by removing a population of negative electrode subunits from a negative electrode sheet, the negative electrode sheet comprising a negative electrode sheet edge margin and at least one negative electrode sheet weakened region that is internal to the negative electrode sheet edge margin, removing a population of separator layer subunits from a separator sheet, and removing a population of positive electrode subunits from a positive electrode sheet, the positive electrode sheet comprising a positive electrode edge margin and at least one positive electrode sheet weakened region that is internal to the positive electrode sheet edge margin, and stacking members of the negative electrode subunit population, the separator layer subunit population and the positive electrode subunit population.Type: ApplicationFiled: August 5, 2024Publication date: February 6, 2025Inventors: Robert S. Busacca, Ashok Lahiri, Murali Ramasubramanian, Bruno A. Valdes, Gardner Cameron Dales, Christopher J. Spindt, Geoffrey Matthew Ho, Harrold J. Rust, III, James D. Wilcox, John F. Varni, Kim Han Lee, Nirav S. Shah, Richard J. Contreras, Lynn Van Erden, Ken S. Matsubayashi, Jeremie J. Dalton, Jason Newton Howard, Robert Keith Rosen, Jonathan C. Doan, Michael J. Armstrong, Anthony Calcaterra, Benjamin L. Cardozo, Joshua David Winans, Neelam Singh, Jeffrey Glenn Buck, Thomas John Schuerlein, Kim Lester Fortunati, Neal Sarswat
-
Patent number: 12206106Abstract: Embodiments of secondary batteries having electrode assemblies are provided. A secondary battery can comprise an electrode assembly having a stacked series of layers, the stacked series of layers having an offset between electrode and counter-electrode layers in a unit cell member of the stacked series. A set of constraints can be provided with a primary constraint system with first and second primary growth constraints separated from each other in a longitudinal direction, and connected by at least one primary connecting member, and a secondary constraint system comprises first and second secondary growth constraints separated in a second direction and connected by members of the stacked series of layers. The primary constraint system may at least partially restrain growth of the electrode assembly in the longitudinal direction, and the secondary constraint system may at least partially restrain growth in the second direction that is orthogonal to the longitudinal direction.Type: GrantFiled: February 17, 2022Date of Patent: January 21, 2025Assignee: Enovix CorporationInventors: Robert S. Busacca, Ashok Lahiri, Murali Ramasubramanian, Bruno A. Valdes, Gardner Cameron Dales, Christopher J. Spindt, Geoffrey Matthew Ho, Harrold J. Rust, III, James D. Wilcox, John F. Varni, Kim Han Lee, Nirav S. Shah, Richard J. Contreras, Lynn Van Erden, Ken S. Matsubayashi, Jeremie J. Dalton, Jason Newton Howard, Robert Keith Rosen, Jonathan C. Doan, Michael J. Armstrong, Anthony Calcaterra, Benjamin L. Cardozo, Joshua David Winans, Neelam Singh, Jeffrey Glenn Buck, Thomas John Schuerlein, Kim Lester Fortunati, Neal Sarswat
-
Publication number: 20220389354Abstract: Methods and systems are described that produce a nonalcoholic beer. The method includes heating water within a container, adding selected components to the water including at least one salt or at least one acid, bringing the water to a boil, adding selected hops to create a water brew, cooling the water brew, adding a selected percentage of a high krausening wort to the cooled water brew, allowing the wort to complete a fermentation cycle to produce a base product, diluting the base product by a percentage to thereby produce an ABV to at or below 0.5%, and adding at least one flavoring to the base product to produce the nonalcoholic beer.Type: ApplicationFiled: November 6, 2020Publication date: December 8, 2022Inventor: Keith ARMSTRONG
-
Patent number: 10590722Abstract: The invention provides a downhole apparatus (100) for positioning a tool or toolstring (10) in a wellbore and a method of use. The apparatus comprises a body (102) configured to be coupled to a tool or toolstring to be positioned in the wellbore. A plurality of support elements (108) is located on the body, the support elements comprising a first retracted position and a second open position. In the open position the support elements define one or more support surfaces. When the apparatus is lowered in a wellbore the one or more support surfaces of the support elements are configured to contact a restriction in the wellbore to support the apparatus in the wellbore and prevent downward movement of the apparatus in the wellbore past the restriction.Type: GrantFiled: April 23, 2013Date of Patent: March 17, 2020Assignee: Halliburton Energy Services, Inc.Inventors: Thomas Searight, William Chappel, Keith Armstrong
-
Publication number: 20160108690Abstract: The invention provides a downhole apparatus (100) for positioning a tool or toolstring (10) in a wellbore and a method of use. The apparatus comprises a body (102) configured to be coupled to a tool or toolstring to be positioned in the wellbore. A plurality of support elements (108) is located on the body, the support elements comprising a first retracted position and a second open position. In the open position the support elements define one or more support surfaces. When the apparatus is lowered in a wellbore the one or more support surfaces of the support elements are configured to contact a restriction in the wellbore to support the apparatus in the wellbore and prevent downward movement of the apparatus in the wellbore past the restriction.Type: ApplicationFiled: April 23, 2013Publication date: April 21, 2016Inventors: Thomas Searight, William Chappel, Keith Armstrong
-
Patent number: 9233874Abstract: A method of cementing in a subterranean formation comprising the steps of: (A) introducing a cement composition into the subterranean formation, the cement composition comprising: (i) cement; (ii) water; and (iii) a high-density additive selected from the group consisting of silicon carbide, sintered bauxite, and any combination thereof, wherein the cement composition has a density of at least 16 pounds per gallon; and (B) allowing the cement composition to set. According to an embodiment, the high-density additive is in a concentration of at least 30% by weight of the cement. A cement composition for use in an oil or gas well comprises: (A) cement; (B) water; and (C) a high-density additive selected from the group consisting of silicon carbide, sintered bauxite, and a combination thereof, wherein the high-density additive is in a concentration of at least 30% by weight of the cement, and wherein the cement composition has a density of at least 16 pounds per gallon.Type: GrantFiled: July 21, 2010Date of Patent: January 12, 2016Assignee: Halliburton Energy Services, Inc.Inventors: Rahul Chandrakant Patil, Sandip Prabhakar Patil, Keith Armstrong
-
Patent number: 8623135Abstract: A method of cementing in a subterranean formation comprising the steps of: (A) introducing a cement composition into the subterranean formation, the cement composition comprising: (i) cement; (ii) water; and (iii) a high-density additive selected from the group consisting of silicon carbide, sintered bauxite, and any combination thereof, wherein the cement composition has a density of at least 16 pounds per gallon; and (B) allowing the cement composition to set. According to an embodiment, the high-density additive is in a concentration of at least 30% by weight of the cement. A cement composition for use in an oil or gas well comprises: (A) cement; (B) water; and (C) a high-density additive selected from the group consisting of silicon carbide, sintered bauxite, and a combination thereof, wherein the high-density additive is in a concentration of at least 30% by weight of the cement, and wherein the cement composition has a density of at least 16 pounds per gallon.Type: GrantFiled: February 7, 2013Date of Patent: January 7, 2014Assignee: Halliburton Energy Services, Inc.Inventors: Rahul Chandrakant Patil, Sandip Prabhakar Patil, Keith Armstrong
-
Publication number: 20120018155Abstract: A method of cementing in a subterranean formation comprising the steps of: (A) introducing a cement composition into the subterranean formation, the cement composition comprising: (i) cement; (ii) water; and (iii) a high-density additive selected from the group consisting of silicon carbide, sintered bauxite, and any combination thereof, wherein the cement composition has a density of at least 16 pounds per gallon; and (B) allowing the cement composition to set. According to an embodiment, the high-density additive is in a concentration of at least 30% by weight of the cement. A cement composition for use in an oil or gas well comprises: (A) cement; (B) water; and (C) a high-density additive selected from the group consisting of silicon carbide, sintered bauxite, and a combination thereof, wherein the high-density additive is in a concentration of at least 30% by weight of the cement, and wherein the cement composition has a density of at least 16 pounds per gallon.Type: ApplicationFiled: July 21, 2010Publication date: January 26, 2012Inventors: Rahul Chandrakant Patil, Sandip Prabhakar Patil, Keith Armstrong
-
Patent number: 6099272Abstract: A rotary peristaltic pump that can supply fluids accurately at desired flow rates and with the desired control over pulsations normally experienced when using peristaltic pumps. The control is provided, in one aspect, by varying the radius of the shell against which the compression devices act to deform the tubing. In another aspect, the torque needed to turn the rotor is equalized throughout the rotation of the rotor to further enhance the flow rate accuracy of the pump. Torque equalization is preferably enhanced by use of a torque control cam positioned about the rotor.Type: GrantFiled: September 18, 1997Date of Patent: August 8, 2000Assignee: FSI InternationalInventors: Keith Armstrong, Kevin Kemp