Patents by Inventor Keith Bjornson

Keith Bjornson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230365614
    Abstract: Compositions, methods, and systems are provided for fluorescent polymerase enzyme substrates comprising protein shields for improving enzyme photostability in single molecule real time sequencing. Fluorescent polymerase enzyme substrates of the invention have a protein shield between the fluorescent dye moieties and nucleotide moieties of the polymerase enzyme substrate. The polymerase enzyme substrates have a nucleotide component and a dye component, each attached to a protein. The attachments can be covalent. The protein can, for example, prevent the direct interaction of the fluorescent dye moiety with the enzyme when carrying out nucleotide synthesis, preventing photodamage to the enzyme. The polymerase enzyme substrates of the invention can have multiple dyes and multiple nucleotide moieties.
    Type: Application
    Filed: March 22, 2023
    Publication date: November 16, 2023
    Inventors: Keith Bjornson, Jeremiah Hanes, Erik Miller, Satwik Kamtekar, Lubomir Sebo, Louis Brogley
  • Patent number: 11718639
    Abstract: Compositions, methods, and systems are provided for fluorescent polymerase enzyme substrates comprising protein shields for improving enzyme photostability in single molecule real time sequencing. Fluorescent polymerase enzyme substrates of the invention have a protein shield between the fluorescent dye moieties and nucleotide moieties of the polymerase enzyme substrate. The polymerase enzyme substrates have a nucleotide component and a dye component, each attached to a protein. The attachments can be covalent. The protein can, for example, prevent the direct interaction of the fluorescent dye moiety with the enzyme when carrying out nucleotide synthesis, preventing photodamage to the enzyme. The polymerase enzyme substrates of the invention can have multiple dyes and multiple nucleotide moieties.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: August 8, 2023
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Keith Bjornson, Jeremiah Hanes, Erik Miller, Satwik Kamtekar, Lubomir Sebo, Louis Brogley
  • Publication number: 20220364168
    Abstract: The present invention provides methods, compositions, and systems for distributing molecules and complexes into reaction sites. In particular, the methods, compositions, and systems of the present invention result in loading of polymerase enzyme complexes into a predetermined number of reaction sites, including nanoscale wells.
    Type: Application
    Filed: April 12, 2022
    Publication date: November 17, 2022
    Inventors: Jaime Juan Benitez-Marzan, Natasha Popovich, Lei Sun, Satwik Kamtekar, Keith Bjornson, Jeremiah Hanes, Karl Voss, Erik Miller, Thomas Linsky, Leewin Chern
  • Patent number: 11414688
    Abstract: This disclosure provides methods for preparing a sequencing library including the steps of providing a template nucleic acid sequence, dNTPs, dUTP, a primer, a polymerase, a dUTP excising enzyme, and a plurality of beads including oligonucleotide adapter sequence segments; amplifying the template nucleic acid with the polymerase, dNTPs, dUTP and random hexamer to provide a complementary nucleic acid sequence including occasional dUTPs; and excising the incorporated dUTPs with the dUTP excising enzyme to provide nicks in the complementary nucleic acid sequence to provide a sequencing library.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: August 16, 2022
    Assignee: 10X GENOMICS, INC.
    Inventors: Paul Hardenbol, Pranav Patel, Benjamin Hindson, Paul William Wyatt, Keith Bjornson, Indira Wu, Zahra Kamila Belhocine
  • Publication number: 20210347808
    Abstract: Compositions, methods, and systems are provided for fluorescent polymerase enzyme substrates comprising protein shields for improving enzyme photostability in single molecule real time sequencing. Fluorescent polymerase enzyme substrates of the invention have a protein shield between the fluorescent dye moieties and nucleotide moieties of the polymerase enzyme substrate. The polymerase enzyme substrates have a nucleotide component and a dye component, each attached to a protein. The attachments can be covalent. The protein can, for example, prevent the direct interaction of the fluorescent dye moiety with the enzyme when carrying out nucleotide synthesis, preventing photodamage to the enzyme. The polymerase enzyme substrates of the invention can have multiple dyes and multiple nucleotide moieties.
    Type: Application
    Filed: April 14, 2021
    Publication date: November 11, 2021
    Inventors: Keith Bjornson, Jeremiah Hanes, Erik Miller, Satwik Kamtekar, Lubomir Sebo, Louis Brogley
  • Patent number: 11142793
    Abstract: Sequencing methods, devices, and systems are described. Arrays of nanoscale electronic elements comprising two electrodes separated by an insulating layer are used to provide sequence information about a template nucleic acid in a polymerase-template complex bound proximate to the insulating region. A sequencing reaction mixture comprising nucleotide analogs having impedance labels is introduced to the array of nanoscale electronic elements under conditions of polymerase mediated nucleic acid synthesis. The time sequence of incorporation of nucleotide analogs is determined by identifying the types of labels of the nucleotide analogs that are incorporated into the growing strand using measured impedance.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: October 12, 2021
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Stephen Turner, Jeremiah Hanes, Keith Bjornson
  • Patent number: 11014958
    Abstract: Compositions, methods, and systems are provided for fluorescent polymerase enzyme substrates comprising protein shields for improving enzyme photostability in single molecule real time sequencing. Fluorescent polymerase enzyme substrates of the invention have a protein shield between the fluorescent dye moieties and nucleotide moieties of the polymerase enzyme substrate. The polymerase enzyme substrates have a nucleotide component and a dye component, each attached to a protein. The attachments can be covalent. The protein can, for example, prevent the direct interaction of the fluorescent dye moiety with the enzyme when carrying out nucleotide synthesis, preventing photodamage to the enzyme. The polymerase enzyme substrates of the invention can have multiple dyes and multiple nucleotide moieties.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: May 25, 2021
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Keith Bjornson, Jeremiah Hanes, Erik Miller, Satwik Kamtekar, Lubomir Sebo, Louis Brogley
  • Patent number: 10934583
    Abstract: Sequencing methods, devices, and systems are described. Arrays of nanoscale electronic elements comprising two electrodes separated by an insulating layer are used to provide sequence information about a template nucleic acid in a polymerase-template complex bound proximate to the insulating region. A sequencing reaction mixture comprising nucleotide analogs having impedance labels is introduced to the array of nanoscale electronic elements under conditions of polymerase mediated nucleic acid synthesis. The time sequence of incorporation of nucleotide analogs is determined by identifying the types of labels of the nucleotide analogs that are incorporated into the growing strand using measured impedance.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: March 2, 2021
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Stephen Turner, Jeremiah Hanes, Keith Bjornson
  • Patent number: 10815465
    Abstract: Provided are compositions comprising recombinant DNA polymerases that include amino acid substitutions, insertions, deletions, and/or exogenous features that confer modified properties upon the polymerase for enhanced single molecule sequencing. Such properties include increased resistance to photodamage, and can also include enhanced metal ion coordination, reduced exonuclease activity, reduced reaction rates at one or more steps of the polymerase kinetic cycle, decreased branching fraction, altered cofactor selectivity, increased yield, increased thermostability, increased accuracy, increased speed, increased readlength, and the like. Also provided are nucleic acids which encode the polymerases with the aforementioned phenotypes, as well as methods of using such polymerases to make a DNA or to sequence a DNA template.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: October 27, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Satwik Kamtekar, Arek Bibillo, Keith Bjornson, Fred Christians, Colleen Cutcliffe, Jeremiah Hanes, Lei Jia, Walter Lee, Erik Miller, Pranav Patel
  • Publication number: 20200224258
    Abstract: Multi-biotinylated reactants are provided which can be used in divalent complexes for various applications such as colocalization, labeling, immobilization, and purification. Methods for constructing, purifying, and using the bis-biotinylated reactants are also provided. In certain embodiments, two bis-biotinylated reactants are bound to a single streptavidin tetramer to provide a complex having a 1:1 stoichiometry with respect to the bis-biotinylated reactants.
    Type: Application
    Filed: December 9, 2019
    Publication date: July 16, 2020
    Inventors: Gene Shen, Natasha Popovich, Erik Miller, Satwik Kamtekar, Keith Bjornson, Jeremiah Hanes, Stephen Yue, Lubomir Sebo, Zhong Wang
  • Patent number: 10711300
    Abstract: The present invention provides methods, compositions, and systems for distributing molecules and complexes into reaction sites. In particular, the methods, compositions, and systems of the present invention result in an active loading of molecules and complexes into reaction sites with improved efficiency over loading by passive diffusion methods alone.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: July 14, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Satwik Kamtekar, Keith Bjornson, Leewin Chern, Steven Lin
  • Publication number: 20200190551
    Abstract: This disclosure provides methods for preparing a sequencing library including the steps of providing a template nucleic acid sequence, dNTPs, dUTP, a primer, a polymerase, a dUTP excising enzyme, and a plurality of beads including oligonucleotide adapter sequence segments; amplifying the template nucleic acid with the polymerase, dNTPs, dUTP and random hexamer to provide a complementary nucleic acid sequence including occasional dUTPs; and excising the incorporated dUTPs with the dUTP excising enzyme to provide nicks in the complementary nucleic acid sequence to provide a sequencing library.
    Type: Application
    Filed: December 17, 2019
    Publication date: June 18, 2020
    Inventors: Paul Hardenbol, Pranav Patel, Benjamin Hindson, Paul William Wyatt, Keith Bjornson, Indira Wu, Zahra Kamila Belhocine
  • Patent number: 10612087
    Abstract: Compositions, kits, methods and systems for single molecule nucleotide sequencing comprising producing polymerase reactions having monovalent cations that control the median pulse width for incorporated nucleotides are disclosed. The levels of monovalent cations are used to control pulse width while allowing other sequencing parameters to remain within a desirable range.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: April 7, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Andrei Fedorov, John Lyle, Keith Bjornson, Jeremiah Hanes
  • Publication number: 20200102613
    Abstract: Sequencing methods, devices, and systems are described. Arrays of nanoscale electronic elements comprising two electrodes separated by an insulating layer are used to provide sequence information about a template nucleic acid in a polymerase-template complex bound proximate to the insulating region. A sequencing reaction mixture comprising nucleotide analogs having impedance labels is introduced to the array of nanoscale electronic elements under conditions of polymerase mediated nucleic acid synthesis. The time sequence of incorporation of nucleotide analogs is determined by identifying the types of labels of the nucleotide analogs that are incorporated into the growing strand using measured impedance.
    Type: Application
    Filed: October 30, 2019
    Publication date: April 2, 2020
    Inventors: Stephen Turner, Jeremiah Hanes, Keith Bjornson
  • Patent number: 10557158
    Abstract: This disclosure provides methods for preparing a sequencing library including the steps of providing a template nucleic acid sequence, dNTPs, dUTP, a primer, a polymerase, a dUTP excising enzyme, and a plurality of beads including oligonucleotide adapter sequence segments; amplifying the template nucleic acid with the polymerase, dNTPs, dUTP and random hexamer to provide a complementary nucleic acid sequence including occasional dUTPs; and excising the incorporated dUTPs with the dUTP excising enzyme to provide nicks in the complementary nucleic acid sequence to provide a sequencing library.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: February 11, 2020
    Assignee: 10X GENOMICS, INC.
    Inventors: Paul Hardenbol, Pranav Patel, Benjamin Hindson, Paul William Wyatt, Keith Bjornson, Indira Wu, Kamila Belhocine
  • Patent number: 10544449
    Abstract: Multi-biotinylated reactants are provided which can be used in divalent complexes for various applications such as colocalization, labeling, immobilization, and purification. Methods for constructing, purifying, and using the bis-biotinylated reactants are also provided. In certain embodiments, two bis-biotinylated reactants are bound to a single streptavidin tetramer to provide a complex having a 1:1 stoichiometry with respect to the bis-biotinylated reactants.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: January 28, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Gene Shen, Natasha Popovich, Erik Miller, Satwik Kamtekar, Keith Bjornson, Jeremiah Hanes, Stephen Yue, Lubomir Sebo, Zhong Wang
  • Patent number: 10544457
    Abstract: The present invention provides methods, compositions, and systems for enriching compositions for polymerase enzyme complexes. In particular, the methods, compositions, and systems of the present invention remove free polymerases from the compositions using one or more purification steps, including protease treatment, thus enriching the compositions for polymerases complexed with a template nucleic acid.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: January 28, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Erik Miller, Keith Bjornson, Kristofor Nyquist, Satwik Kamtekar
  • Publication number: 20200002765
    Abstract: The present invention provides methods, compositions, and systems for distributing molecules and complexes into reaction sites. In particular, the methods, compositions, and systems of the present invention result in loading of polymerase enzyme complexes into a predetermined number of reaction sites, including nanoscale wells.
    Type: Application
    Filed: June 28, 2019
    Publication date: January 2, 2020
    Inventors: Jaime Juan Benitez-Marzan, Natasha Popovich, Lei Sun, Satwik Kamtekar, Keith Bjornson, Jeremiah Hanes, Karl Voss, Erik Miller, Thomas Linsky, Leewin Chern
  • Publication number: 20190390177
    Abstract: Provided are compositions comprising recombinant DNA polymerases that include amino acid substitutions, insertions, deletions, and/or exogenous features that confer modified properties upon the polymerase for enhanced single molecule sequencing. Such properties include increased resistance to photodamage, and can also include enhanced metal ion coordination, reduced exonuclease activity, reduced reaction rates at one or more steps of the polymerase kinetic cycle, decreased branching fraction, altered cofactor selectivity, increased yield, increased thermostability, increased accuracy, increased speed, increased readlength, and the like. Also provided are nucleic acids which encode the polymerases with the aforementioned phenotypes, as well as methods of using such polymerases to make a DNA or to sequence a DNA template.
    Type: Application
    Filed: June 7, 2019
    Publication date: December 26, 2019
    Inventors: Satwik Kamtekar, Arek Bibillo, Keith Bjornson, Fred Christians, Colleen Cutcliffe, Jeremiah Hanes, Lei Jia, Walter Lee, Erik Miller, Pranav Patel
  • Publication number: 20190360043
    Abstract: Disclosed are methods and compositions for enriching nucleic acid fragments from a sample that include one or more target region of interest. In certain aspects, a sample of double stranded nucleic acid fragments having a strand-linking adapter at one end and a non-strand-linking adapter at the other end are denatured and contacted with capture probes specific for a target sequence of interest. Capture probe-bound fragments are isolated from the sample, e.g., using a solid substrate specific for the binding moiety on the capture probes, and are renatured for downstream processing, thus maintaining the original double-stranded region. This enrichment process does not require amplification and as such maintains the nucleic acids in their native states. The disclosed enrichment process and compositions are suitable for analyzing nucleic acids that are fragmented and/or damaged, e.g., cell-free DNA such as circulating tumor DNA, as well as nucleic acids that are many kilobases in length.
    Type: Application
    Filed: May 21, 2019
    Publication date: November 28, 2019
    Inventors: Thang Pham, Stephen Turner, Keith Bjornson, Jeremiah Hanes