Patents by Inventor Keith C. Gallow

Keith C. Gallow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240010761
    Abstract: Methods for resin hydrogenation and decoloration may comprise reacting a resin mixture with a sulfided bimetallic catalyst and excess hydrogen under conditions effective to form a hydrogenated resin mixture, the resin mixture comprising an oligomerized reaction product of at least one polymerizable monomer containing an olefinic unsaturation and a solvent; providing the hydrogenated resin mixture directly to a noble metal catalyst; and reacting the hydrogenated resin mixture in the presence of the noble metal catalyst under conditions effective to form a decolorized resin mixture. Decolorized resin compositions comprising a decolorized resin mixture formed in accordance with the foregoing may have a yellowness index of about 10 or below, as measured by ASTM E313.
    Type: Application
    Filed: October 5, 2021
    Publication date: January 11, 2024
    Inventors: Jose M. Vargas, Keith C. Gallow, Thomas R. Barbee, Alison M. Miller, Yuan-Ju Chen
  • Patent number: 11213798
    Abstract: Methods and systems for solution polymerization. The method can include forming a first mixture stream consisting essentially of at least one catalyst and a process solvent, and forming a second mixture stream consisting essentially of at least one activator and the process solvent. The first mixture stream and the second mixture stream can be fed separately to at least one reaction zone comprising one or more monomers dissolved in the process solvent where the at least one monomers can be polymerized within the at least one reaction zone in the presence of the catalyst, activator and process solvent to produce a polymer product.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: January 4, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Vetkav R. Eswaran, Jay L. Reimers, Keith C. Gallow
  • Patent number: 10696560
    Abstract: A molecular sieve material, EMM-17, has in its as-calcined form, a total surface area of greater than 550 m2/g and/or an external surface area of greater than about 100 m2/g as measured by the BET Method, and a specific X-ray diffraction pattern.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: June 30, 2020
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Ivy D. Johnson, Nadya A. Hrycenko, Theodore E. Datz, William W. Lonergan, Karl G. Strohmaier, Hilda B. Vroman, Keith C. Gallow, Simon C. Weston
  • Publication number: 20190247821
    Abstract: Methods and systems for solution polymerization. The method can include forming a first mixture stream consisting essentially of at least one catalyst and a process solvent, and forming a second mixture stream consisting essentially of at least one activator and the process solvent. The first mixture stream and the second mixture stream can be fed separately to at least one reaction zone comprising one or more monomers dissolved in the process solvent where the at least one monomers can be polymerized within the at least one reaction zone in the presence of the catalyst, activator and process solvent to produce a polymer product.
    Type: Application
    Filed: January 22, 2019
    Publication date: August 15, 2019
    Inventors: Vetkav R. Eswaran, Jay L. Reimers, Keith C. Gallow
  • Publication number: 20190031518
    Abstract: A molecular sieve material, EMM-17, has in its as-calcined form, a total surface area of greater than 550 m2/g and/or an external surface area of greater than about 100 m2/g as measured by the BET Method, and a specific X-ray diffraction pattern.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 31, 2019
    Inventors: Ivy D. Johnson, Nadya A. Hrycenko, Theodore E. Datz, William W. Lonergan, Karl G. Strohmaier, Hilda B. Vroman, Keith C. Gallow, Simon C. Weston