Patents by Inventor Keith Cox

Keith Cox has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060206736
    Abstract: A signaling circuit may be implemented with a connection comprised of signal lines having predefined signals and/or functions. The predefined signals and/or functions may be defined by an individual entity or standards organization. The signaling circuit transmits information in addition to the predefined signals and/or functions. The information may be transmitted from a second device, such as a visual display screen, to a first device, such as a computing device, using at least one signal line in the connection. The information may include information about the state or status of the second device.
    Type: Application
    Filed: May 8, 2006
    Publication date: September 14, 2006
    Inventor: Keith Cox
  • Patent number: 7039501
    Abstract: Generally, a method of determining a position of a robot is provided. In one embodiment, a method of determining a position of a robot comprises acquiring a first set of positional metrics, acquiring a second set of positional metrics and resolving the position of the robot due to thermal expansion using the first set and the second set of positional metrics. Acquiring the first and second set of positional metrics may occur at the same location within a processing system, or may occur at different locations. For example, in another embodiment, the method may comprise acquiring a first set of positional metrics at a first location proximate a processing chamber and acquiring a second set of positional metrics in another location. In another embodiment, substrate center information is corrected using the determined position of the robot.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: May 2, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Marvin L. Freeman, Jeffrey C. Hudgens, Damon Keith Cox, Chris Holt Pencis, Michael Rice, David A. Van Gogh
  • Publication number: 20050049729
    Abstract: Methods and apparatuses to manage working states of a data processing system. At least one embodiment of the present invention includes a data processing system with one or more sensors (e.g., physical sensors such as tachometer and thermistors, and logical sensors such as CPU load) for fine grain control of one or more components (e.g., processor, fan, hard drive, optical drive) of the system for working conditions that balance various goals (e.g., user preferences, performance, power consumption, thermal constraints, acoustic noise). In one example, the clock frequency and core voltage for a processor are actively managed to balance performance and power consumption (heat generation) without a significant latency. In one example, the speed of a cooling fan is actively managed to balance cooling effort and noise (and/or power consumption).
    Type: Application
    Filed: August 12, 2004
    Publication date: March 3, 2005
    Inventors: Michael Culbert, Keith Cox, Brian Howard, Josh Cesare, Richard Williams, Dave Falkenburg, Daisie Huang, Dave Radcliffe
  • Patent number: 6817640
    Abstract: The wafer clamping mechanism comprises a linkage mechanism and a wafer contact point coupled to the linkage mechanism. The linkage mechanism includes a four-bar linkage having: a first link having a first fixed pivot and a first floating pivot remote from the first fixed pivot; a second link having a second fixed pivot and a second floating pivot remote from the second fixed pivot; and a third link having a first coupling pivot rotatably coupled to the first floating pivot, and having a second coupling pivot rotatably coupled to the second floating pivot. In use motion of the linkage mechanism causes the wafer contact point to clamp a wafer.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: November 16, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Venugopal Menon, Damon Keith Cox
  • Publication number: 20040225902
    Abstract: A dynamic power management system includes an operating system (OS) that causes a processor to operate in one of multiple run states that have different performance and/or power dissipation levels. The OS selects the run state in response to processor information (e.g., processor load) being monitored by the OS. The OS can predict future states of the processor information based on sampled processor information. The OS can take an average of the predicted and actual samples for comparison with a threshold to select a run state. The OS can track the number of consecutive saturated samples that occur during a selected window of samples. The OS can predict future processor information samples based on the number of consecutive saturated samples.
    Type: Application
    Filed: May 7, 2003
    Publication date: November 11, 2004
    Inventors: Josh de Cesare, Michael Culbert, Keith Cox
  • Publication number: 20040199291
    Abstract: Generally, a method of determining a position of a robot is provided. In one embodiment, a method of determining a position of a robot comprises acquiring a first set of positional metrics, acquiring a second set of positional metrics and resolving the position of the robot due to thermal expansion using the first set and the second set of positional metrics. Acquiring the first and second set of positional metrics may occur at the same location within a processing system, or may occur at different locations. For example, in another embodiment, the method may comprise acquiring a first set of positional metrics at a first location proximate a processing chamber and acquiring a second set of positional metrics in another location. In another embodiment, substrate center information is corrected using the determined position of the robot.
    Type: Application
    Filed: April 3, 2003
    Publication date: October 7, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Marvin L. Freeman, Jeffrey C. Hudgens, Damon Keith Cox, Chris Holt Pencis, Michael Rice, David A. Van Gogh
  • Patent number: 6682113
    Abstract: The wafer clamping apparatus is disclosed including a cam rotatably coupled to a base plate. The cam is configured to couple with a robot arm. The clamping apparatus also includes a rotating clamp mechanism rotatably coupled to the base plate about a single fixed point. A biasing mechanism, coupled to the rotating clamp mechanism, urges the rotating clamp mechanism towards a clamped position. The rotating clamp mechanism is configured to interact with the cam to engage and disengage the rotating clamp mechanism from the clamped position. The rotating clamp mechanism preferably comprises a hub rotatably coupled to the base plate and a clamping arm and cam follower extending from the hub. The clamping arm is configured to clamp a wafer when the rotating clamp mechanism is in the clamped position, while the cam follower is configured to interact with the cam.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: January 27, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Damon Keith Cox, Venugopal Menon
  • Patent number: 6670807
    Abstract: The proximity sensor includes a magnetic field source (first object) configured to generate a magnetic field, a switch plate (second object) made from a ferrous material, and a magnetic field sensor (detector). The magnetic field source and the switch plate are moveable relative to each another. The magnetic field sensor is disposed close enough to the magnetic field source to detect the magnetic field. In use, when the magnetic field source and the switch plate come into proximity of each another, the magnetic field flows from the magnetic field source to the switch plate, thereby disabling detection of the magnetic field and signaling the proximity.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: December 30, 2003
    Assignee: Applied Materials, Inc.
    Inventor: Damon Keith Cox
  • Publication number: 20030132746
    Abstract: The proximity sensor includes a magnetic field source (first object) configured to generate a magnetic field, a switch plate (second object) made from a ferrous material, and a magnetic field sensor (detector). The magnetic field source and the switch plate are moveable relative to each another. The magnetic field sensor is disposed close enough to the magnetic field source to detect the magnetic field. In use, when the magnetic field source and the switch plate come into proximity of each another, the magnetic field flows from the magnetic field source to the switch plate, thereby disabling detection of the magnetic field and signaling the proximity.
    Type: Application
    Filed: January 16, 2002
    Publication date: July 17, 2003
    Applicant: Applied Materials, Inc.
    Inventor: Damon Keith Cox
  • Publication number: 20030094824
    Abstract: The wafer clamping apparatus is disclosed including a cam rotatably coupled to a base plate. The cam is configured to couple with a robot arm. The clamping apparatus also includes a rotating clamp mechanism rotatably coupled to the base plate about a single fixed point. A biasing mechanism, coupled to the rotating clamp mechanism, urges the rotating clamp mechanism towards a clamped position. The rotating clamp mechanism is configured to interact with the cam to engage and disengage the rotating clamp mechanism from the clamped position. The rotating clamp mechanism preferably comprises a hub rotatably coupled to the base plate and a clamping arm and cam follower extending from the hub. The clamping arm is configured to clamp a wafer when the rotating clamp mechanism is in the clamped position, while the cam follower is configured to interact with the cam.
    Type: Application
    Filed: November 16, 2001
    Publication date: May 22, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Damon Keith Cox, Venugopal Menon
  • Patent number: 6556887
    Abstract: Generally, a method of determining a position of a robot is provided. In one embodiment, a method of determining a position of a robot comprises acquiring a first set of positional metrics, acquiring a second set of positional metrics and resolving the position of the robot due to thermal expansion using the first set and the second set of positional metrics. Acquiring the first and second set of positional metrics may occur at the same location within a processing system, or may occur at different locations. For example, in another embodiment, the method may comprise acquiring a first set of positional metrics at a first location proximate a processing chamber and acquiring a second set of positional metrics in another location. In another embodiment, substrate center information is corrected using the determined position of the robot.
    Type: Grant
    Filed: July 12, 2001
    Date of Patent: April 29, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Marvin L. Freeman, Jeffrey C. Hudgens, Damon Keith Cox, Chris Holt Pencis, Michael Rice, David A. Van Gogh
  • Publication number: 20030014157
    Abstract: Generally, a method of determining a position of a robot is provided. In one embodiment, a method of determining a position of a robot comprises acquiring a first set of positional metrics, acquiring a second set of positional metrics and resolving the position of the robot due to thermal expansion using the first set and the second set of positional metrics. Acquiring the first and second set of positional metrics may occur at the same location within a processing system, or may occur at different locations. For example, in another embodiment, the method may comprise acquiring a first set of positional metrics at a first location proximate a processing chamber and acquiring a second set of positional metrics in another location. In another embodiment, substrate center information is corrected using the determined position of the robot.
    Type: Application
    Filed: July 12, 2001
    Publication date: January 16, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Marvin L. Freeman, Jeffrey C. Hudgens, Damon Keith Cox, Chris Holt Pencis, Michael Rice, David A. Van Gogh
  • Publication number: 20030014155
    Abstract: Generally, a robot for transferring a substrate in a processing system is provided. In one embodiment, a robot for transferring a substrate in a processing system includes a body, a linkage and an end effector that is adapted to retain the substrate thereon. The linkage couples the end effector to the body. The end effector and/or the linkage is comprised of a material having a coefficient of thermal expansion less than 5×10−6 K−1. In another embodiment, the end effector and/or the linkage is comprised of a material having a ratio of thermal conductivity/thermal expansion greater than 1×107 W/(m·K2). In yet another embodiment, the end effector and/or the linkage is comprised of a material having a ratio of thermal conductivity/thermal expansion greater than 1×107 W/(m·K2) and a fracture toughness greater than 1×106 Pa m0.5.
    Type: Application
    Filed: July 22, 2002
    Publication date: January 16, 2003
    Applicant: Applied Material, Inc.
    Inventors: Chris Holt Pencis, Jeffrey C. Hudgens, Damon Keith Cox, Michael Rice, James R. Ciulik
  • Publication number: 20030012631
    Abstract: Generally, a robot for transferring a substrate in a processing system is provided. In one embodiment, a robot for transferring a substrate in a processing system includes a body, a linkage and an end effector that is adapted to retain the substrate thereon. The linkage couples the end effector to the body. The end effector and/or the linkage is comprised of a material having a coefficient of thermal expansion less than about 5 m/(m×Kelvin). In another embodiment, the end effector and/or the linkage is comprised of a material having a ratio of thermal conductivity/thermal expansion greater than about 10 W/m(Kelvin)/(Kelvin). In yet another embodiment, the end effector and/or the linkage is comprised of a material having a ratio of thermal conductivity/thermal expansion greater than about 10 W/m(Kelvin)/(Kelvin) and a coefficient of fracture toughness less than about 1×106 Pa×m0.5.
    Type: Application
    Filed: August 13, 2001
    Publication date: January 16, 2003
    Inventors: Christopher H. Pencis, Jeffrey C. Hudgens, Damon Keith Cox, Michael Rice, James R. Ciulik
  • Publication number: 20030001535
    Abstract: The wafer clamping mechanism comprises a linkage mechanism and a wafer contact point coupled to the linkage mechanism. The linkage mechanism includes a four-bar linkage having: a first link having a first fixed pivot and a first floating pivot remote from the first fixed pivot; a second link having a second fixed pivot and a second floating pivot remote from the second fixed pivot; and a third link having a first coupling pivot rotatably coupled to the first floating pivot, and having a second coupling pivot rotatably coupled to the second floating pivot. In use motion of the linkage mechanism causes the wafer contact point to clamp a wafer.
    Type: Application
    Filed: June 28, 2001
    Publication date: January 2, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Venugopal Menon, Damon Keith Cox
  • Patent number: 4975245
    Abstract: A recirculating high velocity hot air sterilization device includes a housing having a chamber therein. A corrugated, perforated jet curtain plate is disposed within the chamber and partially defines an air supply plenum positioned outwardly of the chamber, the plenum having an electric heating element operatively positioned therein. Spaced apart from the jet curtain plate within the chamber is a nonperforated deflector plate which extends parallel to the jet curtain plate and may be of a flat or corrugated configuration. A blower is connected to the housing and creates therein a recirculating flow of heated air which sequentially flows into the air supply plenum across the heating element, outwardly in a forward direction through the perforations in the jet curtain plate and into the housing chamber, back into the blower, and then into the air supply plenum.
    Type: Grant
    Filed: September 12, 1989
    Date of Patent: December 4, 1990
    Assignee: Archer Aire Industries, Inc.
    Inventors: Virgil L. Archer, M. Keith Cox
  • Patent number: 4923681
    Abstract: An automatically controlled recirculating high velocity hot air sterilization device includes a housing having a sterilization chamber with a temperature sensor mounted therein, a hot air plenum including a blower in fluid communication with a heating element and sterilization chamber for inputting hor air into and receiving hot air from the sterilization chamber for recirculation, and a control chamber having a temperature sensing circuit connected to the temperature circuit for producing electrical inputs representative of the sterilization chamber temperature, power circuits connected to the heating element and blower, a controller connected to the temperature sensing circuit for monitoring the temperature, and to the heating element and blower circuits for controlling their operation, and a control panel including cycle selection switches for operation, an on/off switch, and temperature and timer/error displays.
    Type: Grant
    Filed: October 22, 1987
    Date of Patent: May 8, 1990
    Assignee: ArcherAire Industries, Inc.
    Inventors: M. Keith Cox, William E. Davidson
  • Patent number: 4894207
    Abstract: A recirculating high velocity hot air sterilization device includes a housing having a chamber therein. A corrugated, perforated jet curtain plate is disposed within the chamber and partially defines an air supply plenum positioned outwardly of the chamber, the plenum having an electric heating element operatively positioned therein. Spaced apart from the jet curtain plate within the chamber is a nonperforated deflector plate which extends parallel to the jet curtain plate and may be of a flat or corrugated configuration. A blower is connected to the housing and creates therein a recirculating flow of heated air which sequentially flows into the air supply plenum across the heating element, outwardly in a forward direction through the perforations in the jet curtain plate and into the housing chamber, back into the blower, and then into the air supply plenum.
    Type: Grant
    Filed: February 10, 1989
    Date of Patent: January 16, 1990
    Assignee: Archer Aire Industries, Inc.
    Inventors: Virgil L. Archer, M. Keith Cox
  • Patent number: 4824644
    Abstract: A recirculating, high velocity hot impingement air sterilizer has an inner housing that defines a chamber adapted to receive dental instruments or the like to be sterilized by hot impingement air jets flowed through the chamber by a compact fan, duct and heating coil assembly exteriorly secured to the inner housing. A specially designed insulating jacket structure envelopes and removably receives the inner housing, the jacket structure having a flexible, hollow outer skin portion filled with and captively retaining a suitable insulating material. The jacketed inner housing is received within an outer housing and defines therein a cooling space which extends around a major portion of the insulating jacket structure. Cooling air is flowed through such cooling space by a small fan secured to the inner surface of a removable back panel portion of the outer housing.
    Type: Grant
    Filed: October 8, 1987
    Date of Patent: April 25, 1989
    Assignee: Archeraire Industries, Inc.
    Inventors: M. Keith Cox, Virgil L. Archer