Patents by Inventor Keith D. Paulsen

Keith D. Paulsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10485425
    Abstract: A structured-light imaging system includes a structured light projector for illuminating a surface and an electronic camera configured to image the surface. An image processor receives the images and has structured light scatteroscopy (SLS) firmware with machine readable instructions that illuminate the surface with structured light having a spatial frequency of at least 0.5 mm?1, and process the images to determine a map of scattering parameters at the surface independent of absorption properties. In an embodiment, the system also has cameras configured to obtain a stereo pair of images of the surface, the image processor having 3D firmware for extracting a three dimensional model of the surface from the stereo pair of images and compensating the map for non-flat surfaces.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: November 26, 2019
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Venkataramanan Krishnaswamy, Brian W. Pogue, Keith D. Paulsen, Jonathan T. Elliott, David M. McClatchy, III
  • Patent number: 10463256
    Abstract: A method for determining sub-diffuse scattering parameters of a material includes illuminating the material with structured light and imaging remission by the material of the structured light. The method further includes determining, from captured remission images, sub-diffuse scattering parameters of the material. A structured-light imaging system for determining sub-diffuse scattering parameters of a material includes a structured-light illuminator, for illuminating the material with structured light of periodic spatial structure, and a camera for capturing images of the remission of the structured light by the material. The structured-light imaging system further includes an analysis module for processing the images to quantitatively determine the sub-diffuse scattering parameters. A software product includes machine-readable instructions for analyzing images of remission of structured light by a material to determine sub-diffuse scattering parameters of the material.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: November 5, 2019
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Stephen Chad Kanick, Brian William Pogue, Keith D. Paulsen, Jonathan T. Elliott, David M. McClatchy, III, Venkataramanan Krishnaswamy
  • Publication number: 20190183432
    Abstract: A method for cardiovascular-dynamics correlated imaging includes receiving a time series of images of at least a portion of a patient, receiving a time series of cardiovascular data for the patient, evaluating correlation between the time series of images and the time series of cardiovascular data, and determining a property of the at least a portion of a patient, based upon the correlation. A system for cardiovascular-dynamics correlated imaging includes a processing device having: a processor, a memory communicatively coupled therewith, and a correlation module including machine-readable instructions stored in the memory that, when executed by the processor, perform the function of correlating a time series of images of at least a portion of a patient with a time series of cardiovascular data of the patient to determine a property of the at least a portion of a patient.
    Type: Application
    Filed: February 18, 2019
    Publication date: June 20, 2019
    Inventors: Ryan J. HALTER, Keith D. PAULSEN, Alexander HARTOV
  • Patent number: 10206632
    Abstract: A method for cardiovascular-dynamics correlated imaging includes receiving a time series of images of at least a portion of a patient, receiving a time series of cardiovascular data for the patient, evaluating correlation between the time series of images and the time series of cardiovascular data, and determining a property of the at least a portion of a patient, based upon the correlation. A system for cardiovascular-dynamics correlated imaging includes a processing device having: a processor, a memory communicatively coupled therewith, and a correlation module including machine-readable instructions stored in the memory that, when executed by the processor, perform the function of correlating a time series of images of at least a portion of a patient with a time series of cardiovascular data of the patient to determine a property of the at least a portion of a patient.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: February 19, 2019
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Ryan J. Halter, Keith D. Paulsen, Alexander Hartov
  • Patent number: 9880118
    Abstract: A probe sensor has a printed circuit comprising a coplanar transmission line, a ground plane, a plated-through contact via, and a part-circular ring of ground vias surrounding the contact via. The coplanar transmission line and ground plane are formed on a first layer of the printed circuit, and the contact via and part-circular ring of ground vias are plated with a conductive biocompatible material on a second layer of the printed circuit. A system uses a network analyzer with the probe to measure electrical properties of biological tissue. Also described is a method of using the system to determine qualities of stored blood.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: January 30, 2018
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Paul M. Meaney, Tina Zhou, Andrea Borsic, Alexander T. Farkas, Keith D. Paulsen
  • Patent number: 9792411
    Abstract: A system for determining parameters of porous media or material, which in an embodiment is biological tissue, includes an actuator and a displacement monitor. The actuator is adapted to apply a displacement to tissue at a particular frequency selected from a range of frequencies, and the force monitor adapted to monitor a mechanical response of tissue. The system also has a processor coupled to drive the actuator and to read the mechanical response, the processor coupled to execute from memory a poroelastic model of mechanical properties of the material, and a convergence procedure for determining parameters for the poroelastic model such that the model predicts mechanical response of the tissue to within limits.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 17, 2017
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Adam J. Pattison, Matthew D J McGarry, Keith D. Paulsen, John B. Weaver
  • Patent number: 9786048
    Abstract: A system and method of imaging tissue includes administering a contrast agent having charged gold nanoparticles in suspension into a vessel of the subject, such that the nanoparticles are carried into the tissue; and performing microwave imaging of the tissue after administering the contrast agent. In embodiments, the nanoparticles have a tissue-selective protein tag. In embodiments, images are taken prior to administering the contrast agent, and further images may be taken during an agent—washout period after imaging with contrast agent. The contrast agent is injectable, with the nanoparticles suspended as a colloid in a biocompatible, isotonic, carrier. In particular embodiments, the nanoparticles have median diameter of less than fifty nanometers, or less than five nanometers, and may have a tissue-selective protein tag. A microwave imaging system has injection apparatus with the gold-nanoparticle agent, and is configured to take, and difference, pre and post contrast images as well as washout images.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: October 10, 2017
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Paul M. Meaney, Neil Epstein, Keith D. Paulsen
  • Patent number: 9763744
    Abstract: An optical spectroscopy probe for providing optical spectroscopy guidance of a mechanical biopsy procedure, and a tissue biopsy device including an optical spectroscopy probe. The optical spectroscopy probe is positionable in a lumen of a mechanical biopsy device. The probe may enable optical spectroscopy guidance in biopsy procedures, include brain biopsy procedures.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: September 19, 2017
    Assignees: TRUSTEES OF DARTMOUTH COLLEGE, UNIVERISTY HEALTH NETWORK
    Inventors: Brian C. Wilson, Anthony Taywon Kim, Pablo A. Valdes, Keith D. Paulsen, David W. Roberts
  • Publication number: 20170224288
    Abstract: A method for cardiovascular-dynamics correlated imaging includes receiving a time series of images of at least a portion of a patient, receiving a time series of cardiovascular data for the patient, evaluating correlation between the time series of images and the time series of cardiovascular data, and determining a property of the at least a portion of a patient, based upon the correlation. A system for cardiovascular-dynamics correlated imaging includes a processing device having: a processor, a memory communicatively coupled therewith, and a correlation module including machine-readable instructions stored in the memory that, when executed by the processor, perform the function of correlating a time series of images of at least a portion of a patient with a time series of cardiovascular data of the patient to determine a property of the at least a portion of a patient.
    Type: Application
    Filed: July 27, 2015
    Publication date: August 10, 2017
    Inventors: Ryan J. HALTER, Keith D. PAULSEN, Alexander HARTOV
  • Publication number: 20170164836
    Abstract: A structured-light imaging system includes a structured light projector for illuminating a surface and an electronic camera configured to image the surface. An image processor receives the images and has structured light scatteroscopy (SLS) firmware with machine readable instructions that illuminate the surface with structured light having a spatial frequency of at least 0.5 mm?1, and process the images to determine a map of scattering parameters at the surface independent of absorption properties. In an embodiment, the system also has cameras configured to obtain a stereo pair of images of the surface, the image processor having 3D firmware for extracting a three dimensional model of the surface from the stereo pair of images and compensating the map for non-flat surfaces.
    Type: Application
    Filed: February 4, 2015
    Publication date: June 15, 2017
    Inventors: Venkataramanan Krishnaswamy, Brian W. Pogue, Keith D. Paulsen, Jonathan T. Elliott, David M. McClatchy, III
  • Patent number: 9655545
    Abstract: An apparatus and method for measuring mechanical properties of tissue has a stereo optical surgical microscope with at least one objective lens and at least two digital cameras such that paired images obtained from the digital cameras form stereo pairs, and a digital image processing system adapted to determine surface topography of tissue from the stereo pairs of images and a resulting surface displacement map as a result from indentation. The apparatus has an one indenter; and mechanical modeling routines stored in memory of the image processing system, the mechanical modeling routines capable of constructing computer models of mechanical properties of tissue, and fitting parameters of the computer model to observed surface displacement maps generated by coregistering surface topography of tissue with and without the indenter positioned on the tissue. In an embodiment, fitted parameters of the computer model are displayed and used to adjust a surgical plan.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: May 23, 2017
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Songbai Ji, David W. Roberts, Keith D. Paulsen
  • Publication number: 20170085855
    Abstract: A surgical guidance system has two cameras to provide stereo image stream of a surgical field; and a stereo viewer. The system has a 3D surface extraction module that generates a first 3D model of the surgical field from the stereo image streams; a registration module for co-registering annotating data with the first 3D model; and a stereo image enhancer for graphically overlaying at least part of the annotating data onto the stereo image stream to form an enhanced stereo image stream for display, where the enhanced stereo stream enhances a surgeon's perception of the surgical field. The registration module has an alignment refiner to adjust registration of the annotating data with the 3D model based upon matching of features within the 3D model and features within the annotating data; and in an embodiment, a deformation modeler to deform the annotating data based upon a determined tissue deformation.
    Type: Application
    Filed: December 2, 2016
    Publication date: March 23, 2017
    Inventors: David W. ROBERTS, Keith D. PAULSEN, Alexander HARTOV, Songbai JI, Frederic LEBLOND, Brian W. POGUE, Scott C. DAVIS, Dax KEPSHIRE
  • Patent number: 9597043
    Abstract: An system for supporting a patient during a medical procedure including a pedestal supported from a base surface; a ring structure mounted over the pedestal, the ring structure includes inner and outer ring members that are arranged for relative rotation therebetween. An elongated support platform, upon which the patient is supported, is also provided, as well as a bar member for mounting one end of the support platform to the inner ring of the ring structure while the opposite end of the support platform is free so as to be disposed in a cantilever manner from the ring structure. The roll of the support platform is controlled by rotating the inner ring relative to the outer ring, the pitch of the support platform by pivoting the bar member relative to the inner ring, and the yaw of the support platform by rotating the ring structure relative to the pedestal.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: March 21, 2017
    Assignee: Dartmouth-Hitchcock Clinic
    Inventors: Sohail K. Mirza, Keith D. Paulsen, John C. Peiffer, Atthar Mirza
  • Patent number: 9532029
    Abstract: Systems and methods generate a 3D model of a surface of an object immersed in a transparent liquid within a stationary cylindrical transparent tank. First and second laser line projectors and a camera are rotated around a central axis of the cylindrical tank. The first and second laser line projectors each generate a laser line perpendicular to a plane or rotation and aligned with the center of rotation. The camera images the object. An image from the camera is captured at each of several angular positions of the camera relative to a reference position of the stationary cylindrical tank. The captured images are processed to determine, for each laser line within each image, a plurality of 3D positions where the laser line is incident upon a surface of the object. In embodiments, images are corrected with ray tracing or image warping and registration functions.
    Type: Grant
    Filed: December 22, 2012
    Date of Patent: December 27, 2016
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Matthew Pallone, Paul M. Meaney, Keith D. Paulsen
  • Publication number: 20160278678
    Abstract: An imaging system, such as a surgical microscope, laparoscope, or endoscope or integrated with these devices, includes an illuminator providing patterned white light and/or fluorescent stimulus light. The system receives and images light hyperspectrally, in embodiments using a hyperspectral imaging array, and/or using narrowband tunable filters for passing filtered received light to an imager. Embodiments may construct a 3-D surface model from stereo images, and will estimate optical properties of the target using images taken in patterned light or using other approximations obtained from white light exposures. Hyperspectral images taken under stimulus light are displayed as fluorescent images, and corrected for optical properties of tissue to provide quantitative maps of fluorophore concentration. Spectral information from hyperspectral images is processed to provide depth of fluorophore below the tissue surface. Quantitative images of fluorescence at depth are also prepared.
    Type: Application
    Filed: February 15, 2016
    Publication date: September 29, 2016
    Inventors: Pablo Valdes, Frederic Leblone, Keith D. Paulsen, Brian Campbell Wilson, David W. Roberts, Michael Jermyn
  • Patent number: 9456200
    Abstract: A system for, and method of, extracting a surface profile from a stereo pair of images obtained at an arbitrary setting S of an optical system, includes determining surface profile reconstruction parameters for images obtained with the optical system at a reference setting So of the optical system; determining warping parameters for a digital image processor for warping images obtained with the optical system at the arbitrary setting S into images corresponding to the reference setting So; obtaining the stereo pair of images from at least one camera of the optical system; warping the stereo pair of images into images corresponding to the reference setting So, and using the surface profile reconstruction parameters to determine the surface profile. In a particular embodiment, the surface profile is passed to a computer model of tissue deformation and used to determine an intra-surgery location of a tumor or other anatomic feature of tissue.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: September 27, 2016
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Songbai Ji, Xiaoyao Fan, Keith D. Paulsen, David W. Roberts, Alex Hartov
  • Publication number: 20160157723
    Abstract: A method for determining sub-diffuse scattering parameters of a material includes illuminating the material with structured light and imaging remission by the material of the structured light. The method further includes determining, from captured remission images, sub-diffuse scattering parameters of the material. A structured-light imaging system for determining sub-diffuse scattering parameters of a material includes a structured-light illuminator, for illuminating the material with structured light of periodic spatial structure, and a camera for capturing images of the remission of the structured light by the material. The structured-light imaging system further includes an analysis module for processing the images to quantitatively determine the sub-diffuse scattering parameters. A software product includes machine-readable instructions for analyzing images of remission of structured light by a material to determine sub-diffuse scattering parameters of the material.
    Type: Application
    Filed: February 2, 2016
    Publication date: June 9, 2016
    Inventors: Stephen Chad Kanick, Brian William Pogue, Keith D. Paulsen, Jonathan T. Elliott, David M. McClatchy, III, Venkataramanan Krishnaswamy
  • Patent number: 9336592
    Abstract: A system and method for determining intraoperative locations of a lesion in tissue from lesion locations determined in preoperative imaging includes determining three dimensional locations of surface features of the organ in the preoperative images. A preoperative surface map is extracted from stereo images annotated with surface features from preoperative images. An intraoperative surface map of the organ is extracted from stereo images, and surface features are identified in the stereo images corresponding to surface features annotated into the preoperative surface map. Three dimensional displacements of the surface features are determined and used to constrain a computer model of deformation of the organ. In embodiments, the model of deformation is adapted or constrained to model locations and dimensions of surgical cavities using an optical flow method and/or locations of surgical instruments in the organ. The model of deformation is used to determine intraoperative locations for the lesion.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: May 10, 2016
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Xiaoyao Fan, David W. Roberts, Keith D. Paulsen, Songbai Ji, Alex Hartov
  • Publication number: 20160038252
    Abstract: A method for guiding resection of local tissue from a patient includes generating at least one image of the patient, automatically determining a plurality of surgical guidance cues indicating three-dimensional spatial properties associated with the local tissue, and generating a visualization of the surgical guidance cues relative to the surface. A system for generating surgical guidance cues for resection of a local tissue from a patient includes a location module for processing at least one image of the patient to determine three-dimensional spatial properties of the local tissue, and a surgical cue generator for generating the surgical guidance cues based upon the three-dimensional spatial properties. A patient-specific locator form for guiding resection of local tissue from a patient includes a locator form surface matching surface of the patient, and a plurality of features indicating a plurality of surgical guidance cues, respectively.
    Type: Application
    Filed: October 21, 2015
    Publication date: February 11, 2016
    Inventors: Richard J. Barth, JR., Keith D. Paulsen, Venkataramanan Krishnaswamy
  • Publication number: 20150374308
    Abstract: A method of generating corrected fluorescence data of concentrations of a targeted fluorophore in tissue of a subject includes administering first and second fluorescent contrast agents to the subject, the first contrast agent targeted to tissue of interest, the second agent untargeted. The tissue is illuminated with light of a first stimulus wavelength and first data is acquired at an appropriate emissions wavelength; the tissue is illuminated at a second stimulus wavelength and second data is acquired at a second emissions wavelength associated with the second agent, the first and second emissions wavelength differ. Difference data is generated by subtracting the second data from the first data. A system provides for stimulus and capture at multiple wavelengths, with image storage memory and subtraction code, to perform the method. Corrected data may form an fluorescence image, or is used to generate fluorescence tomographic images.
    Type: Application
    Filed: February 13, 2014
    Publication date: December 31, 2015
    Applicant: The Trustees of Dartmouth College
    Inventors: Kenneth Tichauer, Robert W. Holt, Frederic Leblond, Pablo Valdes, Brian W. Pogue, Keith D. Paulsen, David W. Roberts