Patents by Inventor Keith Edward Bennett

Keith Edward Bennett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8841637
    Abstract: A method of performing nanolithography is disclosed, comprising use of an optical printing head that enables a super-resolution lithographic exposures compatible with conventional optical lithographic processes. The super-resolution exposures are carried out using light transmitted through specially designed super-resolution apertures, of which the “bow-tie” and “C-aperture” are examples. These specially designed apertures create small but bright images in the near-field transmission pattern. A printing head comprising an array of these apertures is held in close proximity to the object to be exposed. A data processing system is provided to re-interpret the layout data into a modulation pattern used to drive the multiple individual channels and the multiple exposures.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: September 23, 2014
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Publication number: 20140116982
    Abstract: A method for fabricating waveguides comprising nano-apertures for illumination of sub-resolution exposures is presented. In particular, the end of a waveguide, such as an optical fiber, is coated with a material, such as an electrically conducting metal or a semiconductor. This material is then selectively removed through a lithography process using photon exposure to create an aperture in the material at the end of the waveguide. Under normal conditions, if the aperture is smaller than the wavelength of light in the waveguide, there is little or no transmission through the aperture. However, with the appropriate selection of materials and aperture geometry, for example a metallic conducting coating and sub-wavelength “C-shaped” or “bow-tie” aperture, enhancement of the transmission of light through the aperture can be achieved, allowing effective illumination of sub-resolution spots using the nano-aperture. This can be used in a nanolithography system incorporating waveguide illuminators as well.
    Type: Application
    Filed: July 9, 2013
    Publication date: May 1, 2014
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Patent number: 8710463
    Abstract: A method for fabricating waveguides comprising nano-apertures for illumination of sub-resolution exposures is presented. In particular, the end of a waveguide, such as an optical fiber, is coated with a material, such as an electrically conducting metal or a semiconductor. This material is then selectively removed through a lithography process using photon exposure to create an aperture in the material at the end of the waveguide. Under normal conditions, if the aperture is smaller than the wavelength of light in the waveguide, there is little or no transmission through the aperture. However, with the appropriate selection of materials and aperture geometry, for example a metallic conducting coating and sub-wavelength “C-shaped” or “bow-tie” aperture, enhancement of the transmission of light through the aperture can be achieved, allowing effective illumination of sub-resolution spots using the nano-aperture. This can be used in a nanolithography system incorporating waveguide illuminators as well.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: April 29, 2014
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Publication number: 20140055769
    Abstract: A method of performing nanolithography is disclosed, comprising use of an optical printing head that enables a super-resolution lithographic exposures compatible with conventional optical lithographic processes. The super-resolution exposures are carried out using light transmitted through specially designed super-resolution apertures, of which the “bow-tie” and “C-aperture” are examples. These specially designed apertures create small but bright images in the near-field transmission pattern. A printing head comprising an array of these apertures is held in close proximity to the object to be exposed. A data processing system is provided to re-interpret the layout data into a modulation pattern used to drive the multiple individual channels and the multiple exposures.
    Type: Application
    Filed: August 12, 2013
    Publication date: February 27, 2014
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Patent number: 8507881
    Abstract: A nanolithography system comprising a novel optical printing head suitable for high throughput nanolithography. This optical head enables a super-resolution lithographic exposure tool that is otherwise compatible with the optical lithographic process infrastructure. The exposing light is transmitted through specially designed super-resolution apertures, of which the “C-aperture” is one example, that create small but bright images in the near-field transmission pattern. A printing head comprising an array of these apertures is held in close proximity to the wafer to be exposed. In one embodiment, an illumination source is divided into parallel channels that illuminate each of the apertures. Each of these channels can be individually modulated to provide the appropriate exposure for the particular location on the wafer corresponding to the current position of the aperture. A data processing system is provided to re-interpret the layout data into a modulation pattern used to drive the individual channels.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: August 13, 2013
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Patent number: 8507880
    Abstract: A method for fabricating waveguides comprising nano-apertures for illumination of sub-resolution exposures is presented. In particular, the end of a waveguide, such as an optical fiber, is coated with a material, such as an electrically conducting metal or a semiconductor. This material is then selectively removed through the process of ion milling, creating an aperture in the material at the end of the waveguide. Under normal conditions, if the aperture is smaller than the wavelength of light in the waveguide, there is little or no transmission through the aperture. However, with the appropriate selection of materials and aperture geometry, for example a metallic conducting coating and sub-wavelength “C-shaped” or “bow-tie” aperture, enhancement of transmission of light through the aperture can be achieved, allowing effective illumination of sub-resolution spots using the ion-milled aperture. This can be used in a nanolithography system incorporating waveguide illuminators as well.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: August 13, 2013
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Publication number: 20120312774
    Abstract: A method for fabricating waveguides comprising nano-apertures for illumination of sub-resolution exposures is presented. In particular, the end of a waveguide, such as an optical fiber, is coated with a material, such as an electrically conducting metal or a semiconductor. This material is then selectively removed through the process of ion milling, creating an aperture in the material at the end of the waveguide. Under normal conditions, if the aperture is smaller than the wavelength of light in the waveguide, there is little or no transmission through the aperture. However, with the appropriate selection of materials and aperture geometry, for example a metallic conducting coating and sub-wavelength “C-shaped” or “bow-tie” aperture, enhancement of transmission of light through the aperture can be achieved, allowing effective illumination of sub-resolution spots using the ion-milled aperture. This can be used in a nanolithography system incorporating waveguide illuminators as well.
    Type: Application
    Filed: June 4, 2012
    Publication date: December 13, 2012
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Patent number: 8193519
    Abstract: A nanolithography system comprising a novel optical printing head suitable for high throughput nanolithography. This optical head enables a super-resolution lithographic exposure tool that is otherwise compatible with the optical lithographic process infrastructure. The exposing light is transmitted through specially designed super-resolution apertures, of which the “C-aperture” is one example, that create small but bright images in the near-field transmission pattern. A printing head comprising an array of these apertures is held in close proximity to the wafer to be exposed. In one embodiment, an illumination source is divided into parallel channels that illuminate each of the apertures. Each of these channels can be individually modulated to provide the appropriate exposure for the particular location on the wafer corresponding to the current position of the aperture. A data processing system is provided to re-interpret the layout data into a modulation pattern used to drive the individual channels.
    Type: Grant
    Filed: September 5, 2009
    Date of Patent: June 5, 2012
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Patent number: 7989783
    Abstract: A nanolithography system comprising a novel optical printing head suitable for high throughput nanolithography. This optical head enables a super-resolution lithographic exposure tool that is otherwise compatible with the optical lithographic process infrastructure. The exposing light is transmitted through specially designed super-resolution apertures, of which the “C-aperture” is one example, that create small but bright images in the near-field transmission pattern. A printing head comprising an array of these apertures is held in close proximity to the wafer to be exposed. In one embodiment, an illumination source is divided into parallel channels that illuminate each of the apertures. Each of these channels can be individually modulated to provide the appropriate exposure for the particular location on the wafer corresponding to the current position of the aperture. A data processing system is provided to re-interpret the layout data into a modulation pattern used to drive the individual channels.
    Type: Grant
    Filed: September 5, 2009
    Date of Patent: August 2, 2011
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Publication number: 20100073657
    Abstract: A nanolithography system comprising a novel optical printing head suitable for high throughput nanolithography. This optical head enables a super-resolution lithographic exposure tool that is otherwise compatible with the optical lithographic process infrastructure. The exposing light is transmitted through specially designed super-resolution apertures, of which the “C-aperture” is one example, that create small but bright images in the near-field transmission pattern. A printing head comprising an array of these apertures is held in close proximity to the wafer to be exposed. In one embodiment, an illumination source is divided into parallel channels that illuminate each of the apertures. Each of these channels can be individually modulated to provide the appropriate exposure for the particular location on the wafer corresponding to the current position of the aperture. A data processing system is provided to re-interpret the layout data into a modulation pattern used to drive the individual channels.
    Type: Application
    Filed: September 5, 2009
    Publication date: March 25, 2010
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Publication number: 20100075259
    Abstract: A nanolithography system comprising a novel optical printing head suitable for high throughput nanolithography. This optical head enables a super-resolution lithographic exposure tool that is otherwise compatible with the optical lithographic process infrastructure. The exposing light is transmitted through specially designed super-resolution apertures, of which the “C-aperture” is one example, that create small but bright images in the near-field transmission pattern. A printing head comprising an array of these apertures is held in close proximity to the wafer to be exposed. In one embodiment, an illumination source is divided into parallel channels that illuminate each of the apertures. Each of these channels can be individually modulated to provide the appropriate exposure for the particular location on the wafer corresponding to the current position of the aperture. A data processing system is provided to re-interpret the layout data into a modulation pattern used to drive the individual channels.
    Type: Application
    Filed: September 5, 2009
    Publication date: March 25, 2010
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Patent number: 7586583
    Abstract: A nanolithography system comprising a novel optical printing head suitable for high throughput nanolithography. This optical head enables a super-resolution lithographic exposure tool that is otherwise compatible with the optical lithographic process infrastructure. The exposing light is transmitted through specially designed super-resolution apertures, of which the “C-aperture” is one example, that create small but bright images in the near-field transmission pattern. A printing head comprising an array of these apertures is held in close proximity to the wafer to be exposed. In one embodiment, an illumination source is divided into parallel channels that illuminate each of the apertures. Each of these channels can be individually modulated to provide the appropriate exposure for the particular location on the wafer corresponding to the current position of the aperture. A data processing system is provided to re-interpret the layout data into a modulation pattern used to drive the individual channels.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: September 8, 2009
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett