Patents by Inventor Keith Foster

Keith Foster has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170327810
    Abstract: A single chain polypeptide fusion protein, comprising: a non-cytotoxic protease capable of cleaving a protein of the exocytic fusion apparatus of a nociceptive sensory afferent; a galanin targeting moiety; a protease cleavage site at which site the fusion protein is cleavable by a protease; a translocation domain capable of translocating the protease from within an endosome, across the endosomal membrane and into the cytosol of the nociceptive sensory afferent; a first spacer located between the non-cytotoxic protease and the protease cleavage site; and a second spacer located between the galanin targeting moiety and the translocation domain.
    Type: Application
    Filed: July 27, 2017
    Publication date: November 16, 2017
    Inventors: Peter JAMES, Keith FOSTER, John CHADDOCK, Roger Kei AOKI, Lance STEWARD, Joseph FRANCIS
  • Publication number: 20170304217
    Abstract: The present invention relates to the use of cannabinoids in the treatment of degenerative skeletal muscle disease. In particular the degenerative skeletal muscle disease is Duchenne muscular dystrophy (DMD). Preferably the cannabinoids are one or more of: Cannabidiol (CBD); Cannabidivarin (CBDV); and Tetrahydrocannabivarin (THCV).
    Type: Application
    Filed: October 14, 2015
    Publication date: October 26, 2017
    Applicant: GW Pharma Limited
    Inventors: Vincenzo Di Marzo, Colin Stott, Keith Foster, Fabio Iannotti
  • Publication number: 20160369257
    Abstract: The present invention is directed to non-cytotoxic protein conjugates for inhibition or reduction of exocytic fusion in a nociceptive sensory afferent cell. The protein conjugates comprise: (i) a Targeting Moiety (TM), wherein the TM is an agonist of a receptor present on a nociceptive sensory afferent cell, and wherein the receptor undergoes endocytosis to be incorporated into an endosome within the nociceptive sensory afferent cell; (ii) a non-cytotoxic protease or a fragment thereof, wherein the protease or protease fragment is capable of cleaving a protein of the exocytic fusion apparatus of the nociceptive sensory afferent cell; and (iii) a Translocation Domain, wherein the Translocation Domain translocates the protease or protease fragment from within the endosome, across the endosomal membrane, and into the cytosol of the nociceptive sensory afferent cell wherein the Targeting Moiety is selected from the group consisting of BAM, ?-endorphin, bradykinin, substance P, dynorphin and/or nociceptin.
    Type: Application
    Filed: September 7, 2016
    Publication date: December 22, 2016
    Applicants: Ipsen Bioinnovation Ltd., Allergan Inc.
    Inventors: Keith FOSTER, John CHADDOCK, Charles PENN, Kei Roger AOKI, Joseph FRANCIS, Lance STEWARD
  • Patent number: 9474807
    Abstract: The present invention is directed to non-cytotoxic protein conjugates for inhibition or reduction of exocytic fusion in a nociceptive sensory afferent cell. The protein conjugates comprise: (i) a Targeting Moiety (TM), wherein the TM is an agonist of a receptor present on a nociceptive sensory afferent cell, and wherein the receptor undergoes endocytosis to be incorporated into an endosome within the nociceptive sensory afferent cell; (ii) a non-cytotoxic protease or a fragment thereof, wherein the protease or protease fragment is capable of cleaving a protein of the exocytic fusion apparatus of the nociceptive sensory afferent cell; and (iii) a Translocation Domain, wherein the Translocation Domain translocates the protease or protease fragment from within the endosome, across the endosomal membrane, and into the cytosol of the nociceptive sensory afferent cell wherein the Targeting Moiety is selected from the group consisting of BAM, ?-endorphin, bradykinin, substance P, dynorphin and/or nociceptin.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: October 25, 2016
    Assignees: IPSEN BIOINNOVATION LIMITED, ALLERGAN INC.
    Inventors: Keith Foster, John Chaddock, Charles Penn, Kei Roger Aoki, Joseph Francis, Lance Steward
  • Publication number: 20160137999
    Abstract: The invention provides a polypeptide, for use in suppressing or treating itch, wherein the polypeptide comprises: a non-cytotoxic protease, which protease is capable of cleaving a SNARE protein in an itch-specific DRG neuron or a pruriceptor; a Targeting Moiety (TM) that is capable of binding to a Binding Site on the itch-specific DRG neuron or a pruriceptor, which Binding Site is capable of undergoing endocytosis to be incorporated into an endosome within the itch-specific DRG neuron or a pruriceptor, and wherein said itch-specific DRG neuron or a pruriceptor expresses said SNARE protein; and a translocation domain that is capable of translocating the protease from within an endosome, across the endosomal membrane and into the cytosol of the itch-specific DRG neuron or a pruriceptor; with the proviso that the polypeptide is not a clostridial neurotoxin (holotoxin) molecule.
    Type: Application
    Filed: July 9, 2014
    Publication date: May 19, 2016
    Inventor: Keith FOSTER
  • Patent number: 9243301
    Abstract: A single chain, polypeptide fusion protein, comprising: a non-cytotoxic protease, or a fragment thereof, which protease or protease fragment can cleave a protein of the exocytic fusion apparatus of a nociceptive sensory afferent; a Targeting Moiety that can bind to a Binding Site on the nociceptive sensory afferent, which Binding Site can undergo endocytosis to be incorporated into an endosome within the nociceptive sensory afferent; a protease cleavage site at which site the fusion protein is cleavable by a protease, which is located between the non-cytotoxic protease and the Targeting Moiety; and a translocation domain that can translocate the protease or protease fragment from within an endosome, across the endosomal membrane and into the cytosol of the nociceptive sensory afferent; wherein the Targeting Moiety is BAM, ?-endorphin, bradykinin, substance P, dynorphin and/or nociceptin. Nucleic acid sequences encoding the fusion proteins, methods of preparing same and uses thereof are also described.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: January 26, 2016
    Assignees: Allergan, Inc., Ipsen Bioinnovation Limited
    Inventors: Keith Foster, John Chaddock, Philip Marks, Patrick Stancombe, Kei Roger Aoki, Joseph Francis, Lance Steward
  • Publication number: 20150353908
    Abstract: The invention provides a polypeptide, for use in suppressing or treating osteoporosis, wherein the polypeptide comprises: a non-cytotoxic protease, which protease is capable of cleaving a SNARE protein in an enterochromaffin cell; a Targeting Moiety (TM) that is capable of binding to a Binding Site on an enterochromaffin cell, which Binding Site is capable of undergoing endocytosis to be incorporated into an endosome within the enterochromaffin cell, and wherein said enterochromaffin cell expresses said SNARE protein; and a translocation domain that is capable of translocating the protease from within an endosome, across the endosomal membrane and into the cytosol of the enterochromaffin cell; with the proviso that the polypeptide is not a clostridial neurotoxin (holotoxin) molecule.
    Type: Application
    Filed: February 21, 2014
    Publication date: December 10, 2015
    Inventor: Keith FOSTER
  • Patent number: 9139635
    Abstract: The present invention is directed to non-cytotoxic protein conjugates for inhibition or reduction of exocytic fusion in a nociceptive sensory afferent cell. The protein conjugates comprise: (i) a Targeting Moiety (TM), wherein the TM is an agonist of a receptor present on a nociceptive sensory afferent cell, and wherein the receptor undergoes endocytosis to be incorporated into an endosome within the nociceptive sensory afferent cell; (ii) a non-cytotoxic protease or a fragment thereof, wherein the protease or protease fragment is capable of cleaving a protein of the exocytic fusion apparatus of the nociceptive sensory afferent cell; and (iii) a Translocation Domain, wherein the Translocation Domain translocates the protease or protease fragment from within the endosome, across the endosomal membrane, and into the cytosol of the nociceptive sensory afferent cell. Nucleic acid sequences encoding the protein conjugates, methods of preparing same and uses thereof are also described.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: September 22, 2015
    Assignees: SYNTAXIN, LTD., ALLERGAN, INC.
    Inventors: Keith Foster, John Chaddock, Charles Penn, Kei Roger Aoki, Joseph Francis, Lance Steward
  • Publication number: 20150197739
    Abstract: A single chain, polypeptide fusion protein, comprising: a non-cytotoxic protease, which protease is capable of cleaving a protein of the exocytic fusion apparatus of a nociceptive sensory afferent; a galanin Targeting Moiety that is capable of binding to a Binding Site on the nociceptive sensory afferent, which Binding Site is capable of undergoing endocytosis to be incorporated into an endosome within the nociceptive sensory afferent; a protease cleavage site at which site the fusion protein is cleavable by a protease, wherein the protease cleavage site is located between the non-cytotoxic protease and the galanin Targeting Moiety; a translocation domain that is capable of translocating the protease from within an endosome, across the endosomal membrane and into the cytosol of the nociceptive sensory afferent; a first spacer located between the non-cytotoxic protease and the protease cleavage site, wherein said first spacer comprises an amino acid sequence of from 4 to 25 amino acid residues; and a second sp
    Type: Application
    Filed: August 27, 2013
    Publication date: July 16, 2015
    Inventors: Peter James, Keith Foster, John Chaddock, Roger Kei Aoki, Lance Steward, Joseph Francis
  • Patent number: 9072736
    Abstract: Use of a therapeutic molecule, for the treatment of specific pain conditions, wherein the therapeutic molecule is a single chain, polypeptide fusion protein, comprising: a non-cytotoxic protease, or a fragment thereof, which protease or protease fragment can cleave a protein of the exocytic fusion apparatus of a nociceptive sensory afferent; a Targeting Moiety that can bind to a Binding Site on the nociceptive sensory afferent, which Binding Site can undergo endocytosis to be incorporated into an endosome within the nociceptive sensory afferent; a protease cleavage site at which site the fusion protein is cleavable by a protease, wherein the protease cleavage site is located between the non-cytotoxic protease or fragment thereof and the Targeting Moiety; and a translation domain that can translocate the protease or protease fragment from within an endosome, across the endosomal membrane and into the cytosol of the nociceptive sensory afferent.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: July 7, 2015
    Assignees: Allergan, Inc., Syntaxin Limited
    Inventors: Keith Foster, John Chaddock, Philip Marks, Patrick Stancombe, K. Roger Aoki, Joseph Francis, Lance Steward
  • Patent number: 9012195
    Abstract: The present invention is directed to non-cytotoxic protein conjugates for inhibition or reduction of exocytic fusion in a nociceptive sensory afferent cell. The protein conjugates comprise: (i) a dynorphin Targeting Moiety (TM), wherein the TM is an agonist of a receptor present on a nociceptive sensory afferent cell, and wherein the receptor undergoes endocytosis to be incorporated into an endosome within the nociceptive sensory afferent cell; (ii) a non-cytotoxic protease or a fragment thereof, wherein the protease or protease fragment is capable of cleaving a protein of the exocytic fusion apparatus of the nociceptive sensory afferent cell; and (iii) a Translocation Domain, wherein the Translocation Domain translocates the protease or protease fragment from within the endosome, across the endosomal membrane, and into the cytosol of the nociceptive sensory afferent cell. Nucleic acid sequences encoding the protein conjugates, methods of preparing same and uses thereof are also described.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: April 21, 2015
    Assignees: Syntaxin, Ltd., Allergan, Inc.
    Inventors: Keith Foster, John Chaddock, Charles Penn, Kei Roger Aoki, Joseph Francis, Lance Steward
  • Patent number: 8940870
    Abstract: A single chain, polypeptide fusion protein, comprising: a non-cytotoxic protease, or a fragment thereof, which protease or protease fragment is capable of cleaving a protein of the exocytic fusion apparatus of a nociceptive sensory afferent; a dynorphin Targeting Moiety that is capable of binding to a Binding Site on the nociceptive sensory afferent, which Binding Site is capable of undergoing endocytosis to be incorporated into an endosome within the nociceptive sensory afferent; a protease cleavage site at which site the fusion protein is cleavable by a protease, wherein the protease cleavage site is located between the non-cytotoxic protease or fragment thereof and the dynorphin Targeting Moiety; and a translocation domain that is capable of translocating the protease or protease fragment from within an endosome, across the endosomal membrane and into the cytosol of the nociceptive sensory afferent.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: January 27, 2015
    Assignees: Syntaxin, Ltd., Allergan, Inc.
    Inventors: Keith Foster, John Chaddock, Philip Marks, Patrick Stancombe, Kei Roger Aoki, Joseph Francis, Lance Steward
  • Publication number: 20140302006
    Abstract: The present invention relates to a method for suppressing neuroendocrine disease. The therapy employs use of a non-cytotoxic protease, which is targeted to a neuroendocrine tumour cell, preferably via a somatostatin or cortistatin receptor, a GHRH receptor, a ghrelin receptor, a bombesin receptor, a urotensin receptor a melanin-concentrating hormone receptor 1; a KiSS-1 receptor or a prolactin-releasing peptide receptor. When so delivered, the protease is internalised and inhibits secretion from said tumour cell. The present invention also relates to polypeptides and nucleic acids for use in said methods.
    Type: Application
    Filed: April 11, 2014
    Publication date: October 9, 2014
    Applicant: Syntaxin Limited
    Inventors: Steven JOHNSTONE, Philip MARKS, Keith FOSTER
  • Publication number: 20140294797
    Abstract: The present invention is directed to non-cytotoxic protein conjugates for inhibition or reduction of exocytic fusion in a nociceptive sensory afferent cell. The protein conjugates comprise: (i) a Targeting Moiety (TM), wherein the TM is an agonist of a receptor present on a nociceptive sensory afferent cell, and wherein the receptor undergoes endocytosis to be incorporated into an endosome within the nociceptive sensory afferent cell; (ii) a non-cytotoxic protease or a fragment thereof, wherein the protease or protease fragment is capable of cleaving a protein of the exocytic fusion apparatus of the nociceptive sensory afferent cell; and (iii) a Translocation Domain, wherein the Translocation Domain translocates the protease or protease fragment from within the endosome, across the endosomal membrane, and into the cytosol of the nociceptive sensory afferent cell wherein the Targeting Moiety is selected from the group consisting of BAM, ?-endorphin, bradykinin, substance P, dynorphin and/or nociceptin.
    Type: Application
    Filed: June 10, 2014
    Publication date: October 2, 2014
    Inventors: Keith FOSTER, John CHADDOCK, Charles PENN, Kei Roger AOKI, Joseph FRANCIS, Lance STEWARD
  • Publication number: 20140286925
    Abstract: The present invention relates to polypeptides for use in suppressing cancer and cancer disorders. The treatment employs use of a non-cytotoxic protease, which is targeted to the cancer cell, and, when so delivered, the protease is internalised and inhibits secretion from the cancer cell.
    Type: Application
    Filed: June 4, 2014
    Publication date: September 25, 2014
    Applicant: Syntaxin Limited
    Inventors: Frederic MADEC, Philip LECANE, Philip MARKS, Keith FOSTER
  • Publication number: 20140219983
    Abstract: The present invention relates to a method for suppressing or treating cancer, in particular to a method for suppressing or treating one or more of colorectal cancer, breast cancer, prostate cancer and/or lung cancer. The therapy employs use of a non-cytotoxic protease, which is targeted to a growth hormone-secreting cell such as to a pituitary cell. When so delivered, the protease is internalised and inhibits secretion/transmission of growth hormone from said cell. The present invention also relates to polypeptides and nucleic acids for use in said methods.
    Type: Application
    Filed: April 11, 2014
    Publication date: August 7, 2014
    Applicant: Syntaxin Limited
    Inventors: Frederic MADEC, Phil LECANE, Philip MARKS, Keith FOSTER
  • Patent number: 8796216
    Abstract: The present invention relates to a method for suppressing neuroendocrine disease. The therapy employs use of a non-cytotoxic protease, which is targeted to a neuroendocrine tumor cell, preferably via a somatostatin or cortistatin receptor, a GHRH receptor, a ghrelin receptor, a bombesin receptor, a urotensin receptor a melanin-concentrating hormone receptor 1; a KiSS-1 receptor or a prolactin-releasing peptide receptor. When so delivered, the protease is internalized and inhibits secretion from said tumor cell. The present invention also relates to polypeptides and nucleic acids for use in said methods.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: August 5, 2014
    Assignee: Syntaxin Limited
    Inventors: Stephen Johnstone, Philip Marks, Keith Foster
  • Patent number: 8778634
    Abstract: The present invention is directed to non-cytotoxic protein conjugates for inhibition or reduction of exocytic fusion in a nociceptive sensory afferent cell. The protein conjugates comprise: (i) a Targeting Moiety (TM), wherein the TM is an agonist of a receptor present on a nociceptive sensory afferent cell, and wherein the receptor undergoes endocytosis to be incorporated into an endosome within the nociceptive sensory afferent cell; (ii) a non-cytotoxic protease or a fragment thereof, wherein the protease or protease fragment is capable of cleaving a protein of the exocytic fusion apparatus of the nociceptive sensory afferent cell; and (iii) a Translocation Domain, wherein the Translocation Domain translocates the protease or protease fragment from within the endosome, across the endosomal membrane, and into the cytosol of the nociceptive sensory afferent cell wherein the Targeting Moiety is selected from the group consisting of BAM, ?-endorphin, bradykinin, substance P, dynorphin and/or nociceptin.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: July 15, 2014
    Assignees: Syntaxin, Ltd., Allergan, Inc.
    Inventors: Keith Foster, John Chaddock, Charles Penn, Kei Roger Aoki, Joseph Francis, Lance Steward
  • Patent number: D764564
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: August 23, 2016
    Assignee: Performance Designed Products LLC
    Inventors: Nicholas DeSomov, Dennis Keith Foster, Michael Chang
  • Patent number: D808466
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: January 23, 2018
    Assignee: Performance Designed Products LLC
    Inventors: Dennis Keith Foster, Christopher Michael Mancini