Patents by Inventor Keith Glenn Mattson

Keith Glenn Mattson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9315183
    Abstract: A method for brake pressure apply in a hydraulic brake system includes commanding a cage clearance reduction phase and commanding a wheel control phase subsequent to the cage clearance reduction phase. Accordingly, the cage clearance is reduced prior to entering the wheel control phase. A method for cage clearance reduction in a hydraulic brake system for roll stability control is also provided.
    Type: Grant
    Filed: November 9, 2013
    Date of Patent: April 19, 2016
    Assignee: Ford Global Technologies
    Inventors: Erick Michael Lavoie, Thomas Salmon, Keith Glenn Mattson
  • Patent number: 9162656
    Abstract: A roll control system (16) for an automotive vehicle (10) is used to actively detect if one of the plurality of the driven wheels (12) is lifted. The system generates a pressure request to determine if the wheel has lifted. By comparing the change in wheel speed of a driven wheel to a change in wheel speed threshold the wheel lift status can be determined. The wheel speed change threshold may be dependent upon various vehicle operating conditions such as powertrain torque, braking torque and/or longitudinal force on the vehicle.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: October 20, 2015
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Keith Glenn Mattson, Todd Allen Brown, Joseph Carr Meyers, Michael Edward Brewer
  • Publication number: 20140067223
    Abstract: A method for brake pressure apply in a hydraulic brake system includes commanding a cage clearance reduction phase and commanding a wheel control phase subsequent to the cage clearance reduction phase. Accordingly, the cage clearance is reduced prior to entering the wheel control phase. A method for cage clearance reduction in a hydraulic brake system for roll stability control is also provided.
    Type: Application
    Filed: November 9, 2013
    Publication date: March 6, 2014
    Applicant: Ford Global Technologies
    Inventors: Erick Michael Lavoie, Thomas Salmon, Keith Glenn Mattson
  • Publication number: 20100145574
    Abstract: A roll control system (16) for an automotive vehicle (10) is used to actively detect if one of the plurality of the driven wheels (12) is lifted. The system generates a pressure request to determine if the wheel has lifted. By comparing the change in wheel speed of a driven wheel to a change in wheel speed threshold the wheel lift status can be determined. The wheel speed change threshold may be dependent upon various vehicle operating conditions such as powertrain torque, braking torque and/or longitudinal force on the vehicle.
    Type: Application
    Filed: December 4, 2009
    Publication date: June 10, 2010
    Inventors: Keith Glenn Mattson, Todd Allen Brown, Joseph Carr Meyers, Michael Edward Brewer
  • Patent number: 7653471
    Abstract: A roll control system (16) for an automotive vehicle (10) is used to actively detect if one of the plurality of the driven wheels (12) is lifted. The system generates a pressure request to determine if the wheel has lifted. By comparing the change in wheel speed of a driven wheel to a change in wheel speed threshold the wheel lift status can be determined. The wheel speed change threshold may be dependent upon various vehicle operating conditions such as powertrain torque, braking torque and/or longitudinal force on the vehicle.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: January 26, 2010
    Assignee: Ford Global Technologies, LLC
    Inventors: Keith Glenn Mattson, Todd Allen Brown, Joseph Carr Meyers, Michael Edward Brewer
  • Patent number: 7366602
    Abstract: A roll stability control system for an automotive vehicle includes an external environment sensing system, such as a camera-based vision system, or a radar, lidar or sonar-based sensing system that generates image, radar, lidar, and/or sonar-based signals. A controller is coupled to the sensing system and generates dynamic vehicle characteristic signals in response to the image, radar, lidar, or sonar-based signals. The controller controls the rollover control system in response to the dynamic vehicle control signal. The dynamic vehicle characteristics may include roll related angles, angular rates, and various vehicle velocities.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: April 29, 2008
    Assignee: Ford Global Technologies LLC
    Inventors: Liwen Xu, Samir M. Beydoun, Gerald H. Engelman, Aaron L. Mills, Jianbo Lu, Keith Glenn Mattson
  • Patent number: 7197388
    Abstract: A roll stability control system (18) for an automotive vehicle (10) includes an external environment sensing system, such as a camera-based vision system, or a radar, lidar or sonar-based sensing system (43) that generates image, radar, lidar, and/or sonar-based signals. A controller (26) is coupled to the sensing system and generates dynamic vehicle characteristic signals in response to the image, radar, lidar, or sonar-based signals. The controller controls the rollover control system (18) in response to the dynamic vehicle control signal. The dynamic vehicle characteristics may include roll related angles, angular rates, and various vehicle velocities.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: March 27, 2007
    Assignee: Ford Global Technologies, LLC
    Inventors: Liwen Xu, Samir M. Beydoun, Gerald H. Engelman, Aaron L. Mills, Jianbo Lu, Keith Glenn Mattson
  • Patent number: 7143864
    Abstract: A stability control system (24) for an automotive vehicle includes a plurality of sensors sensing the dynamic conditions of the vehicle. The sensors include a steering angle sensor (35) and a yaw rate sensor (28). The controller (26) is coupled to the steering angle sensor (35) and the yaw rate sensor (28). The controller (26) determines a desired yaw rate in response to the steering wheel angle input, determines a corrected steering wheel input as a function of the desired yaw rate of an ideal vehicle and the vehicle yaw rate, and controls the road wheel steer angle (front, rear, or both) steering actuator in response to the corrected steering wheel input, the yaw rate and the modified steering wheel input, vehicle speed, lateral acceleration, longitudinal acceleration, yaw rate, steering wheel angle, and road wheel angles.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: December 5, 2006
    Assignee: Ford Global Technologies, LLC.
    Inventors: Keith Glenn Mattson, Douglas Scott Rhode, Todd Allen Brown
  • Patent number: 7136731
    Abstract: A control system (18) for an automotive vehicle (10) has a roll angular rate sensor (34) and a lateral accelerometer (32) that are used to determine the body roll angle of the vehicle when a rollover event has been sensed. A rollover event sensor (27) may be implemented physically or in combination with various types of suspension, load or other types of lifting determinations.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: November 14, 2006
    Assignee: Ford Global Technologies, LLC
    Inventors: Jianbo Lu, Keith Glenn Mattson, Todd Allen Brown
  • Patent number: 7132937
    Abstract: A control system (18) and method for an automotive vehicle (10) used for detecting lift of a wheel includes a passive wheel lift detector (58) that generates a passive wheel lift signal, an active wheel lift detector (60) that generates an active wheel lift signal, and an integrated wheel lift detector (62) coupled to the passive wheel lift detector (58) and the active wheel lift detector (60). The integrated wheel lift detector (62) generates a final wheel lift signal in response to the passive wheel lift signal and the active wheel lift signal. The final wheel lift signal may be used to control a safety device such as a rollover prevention system.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: November 7, 2006
    Assignee: Ford Global Technologies, LLC
    Inventors: Jianbo Lu, Joseph Carr Meyers, Keith Glenn Mattson, Todd Allen Brown
  • Patent number: 6840343
    Abstract: A stability control system (24) for an automotive vehicle includes a plurality of sensors sensing the dynamic conditions of the vehicle. The controller (26) is coupled to the sensors. The controller (26) determines a lateral force in response to measured vehicle conditions, determines a slip angle in response to measured vehicle conditions, determines a first steering actuator angle change to decrease the slip angle until the lateral force increases, and thereafter determines a second steering actuator angle change to increase the slip angle until the lateral force decreases.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: January 11, 2005
    Assignee: Ford Global Technologies, LLC
    Inventors: Keith Glenn Mattson, Todd Allen Brown
  • Publication number: 20040254707
    Abstract: A control system (18) for an automotive vehicle (10) has a roll angular rate sensor (34) and a lateral accelerometer (32) that are used to determine the body roll angle of the vehicle when a rollover event has been sensed. A rollover event sensor (27) may be implemented physically or in combination with various types of suspension, load or other types of lifting determinations.
    Type: Application
    Filed: June 11, 2003
    Publication date: December 16, 2004
    Inventors: Jianbo Lu, Keith Glenn Mattson, Todd Allen Brown
  • Publication number: 20040167701
    Abstract: A roll control system (16) for an automotive vehicle (10) is used to actively detect if one of the plurality of the driven wheels (12) is lifted. The system generates a pressure request to determine if the wheel has lifted. By comparing the change in wheel speed of a driven wheel to a change in wheel speed threshold the wheel lift status can be determined. The wheel speed change threshold may be dependent upon various vehicle operating conditions such as powertrain torque, braking torque and/or longitudinal force on the vehicle.
    Type: Application
    Filed: February 26, 2004
    Publication date: August 26, 2004
    Inventors: Keith Glenn Mattson, Todd Allen Brown, Joseph Carr Meyers, Michael Edward Brewer
  • Publication number: 20040074693
    Abstract: A stability control system (24) for an automotive vehicle includes a plurality of sensors sensing the dynamic conditions of the vehicle. The controller (26) is coupled to the sensors. The controller (26) determines a lateral force in response to measured vehicle conditions, determines a slip angle in response to measured vehicle conditions, determines a first steering actuator angle change to decrease the slip angle until the lateral force increases, and thereafter determines a second steering actuator angle change to increase the slip angle until the lateral force decreases.
    Type: Application
    Filed: October 16, 2002
    Publication date: April 22, 2004
    Applicant: Ford Global Technologies, Inc.
    Inventors: Keith Glenn Mattson, Todd Allen Brown
  • Publication number: 20040060765
    Abstract: A stability control system (24) for an automotive vehicle includes a plurality of sensors sensing the dynamic conditions of the vehicle. The sensors include a steering angle sensor (35) and a yaw rate sensor (28). The controller (26) is coupled to the steering angle sensor (35) and the yaw rate sensor (28). The controller (26) determines a desired yaw rate in response to the steering wheel angle input, determines a corrected steering wheel input as a function of the desired yaw rate of an ideal vehicle and the vehicle yaw rate, and controls the road wheel steer angle (front, rear, or both) steering actuator in response to the corrected steering wheel input, the yaw rate and the modified steering wheel input, vehicle speed, lateral acceleration, longitudinal acceleration, yaw rate, steering wheel angle, and road wheel angles.
    Type: Application
    Filed: September 27, 2002
    Publication date: April 1, 2004
    Applicant: Ford Global Technologies, Inc.
    Inventors: Keith Glenn Mattson, Douglas Scott Rhode, Todd Allen Brown
  • Publication number: 20040064246
    Abstract: A control system (18) and method for an automotive vehicle (10) used for detecting lift of a wheel includes a passive wheel lift detector (58) that generates a passive wheel lift signal, an active wheel lift detector (60) that generates an active wheel lift signal, and an integrated wheel lift detector (62) coupled to the passive wheel lift detector (58) and the active wheel lift detector (60). The integrated wheel lift detector (62) generates a final wheel lift signal in response to the passive wheel lift signal and the active wheel lift signal. The final wheel lift signal may be used to control a safety device such as a rollover prevention system.
    Type: Application
    Filed: June 27, 2003
    Publication date: April 1, 2004
    Inventors: Jianbo Lu, Joseph Carr Meyers, Keith Glenn Mattson, Todd Allen Brown
  • Patent number: 6662898
    Abstract: A stability control system (24) for an automotive vehicle includes a plurality of sensors sensing the dynamic conditions of the vehicle. The controller (26) is coupled to the sensors. The controller (26) determines a road surface coefficient of friction, calculates a maximum slip angle based on the road surface coefficient of friction, determines a calculated side slip angle in response to measured dynamic vehicle conditions, and reduces a steering wheel actuator angle when the calculated side slip angle is greater than the maximum slip angle.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: December 16, 2003
    Assignee: Ford Global Technologies, LLC
    Inventors: Keith Glenn Mattson, Todd Allen Brown