Patents by Inventor Keith K. Koai

Keith K. Koai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230369033
    Abstract: An apparatus for feedback control in plasma processing systems using radical sensing, and a method for feedback control in plasma processing systems using radical sensing, the apparatus comprising at least one process gas supply system configured to output at least one process gas, at least one plasma source configured to receive the at least one process gas and generate at least one radical flow, at least one process chamber in communication with the at least one plasma source, wherein the process chamber receives the at least one radical flow and directs at least a portion of the at least one radical flow to one or more devices, the process chamber configured to output at least one process chamber output, at least one gas analyzer in communication with and configured to sample at least one of the at least one process gas, at least one radical flow, at least one radical flow within the at least one process chamber, and the at least one process chamber output, and at least one controller in communication with
    Type: Application
    Filed: November 9, 2022
    Publication date: November 16, 2023
    Inventors: Keith K. Koai, Chenglong Yang, Guy Rosenzweig, Jimmy Liu, Michael Harris, James Blessing
  • Patent number: 7871470
    Abstract: An apparatus for positioning a substrate support within a processing chamber is provided. In one embodiment, an apparatus for positioning a substrate support includes a yoke comprising a curved surface with a first slot formed therethrough, a base comprising a first surface adapted to support the substrate support and a curved second surface, wherein the curved second surface mates with the curved surface of the yoke and a first slot is formed through the curved second surface of the base, and a first threaded member disposed through the first slot in the yoke and the first slot in the base.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: January 18, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Eric W. Schieve, Keith K. Koai, David T. Or, Rene T. Correa
  • Patent number: 6887317
    Abstract: A substrate support is provided that features a lift pin having at least one larger diameter shoulder section that forms a relief region between the lift pin and a guide hole disposed through a substrate support. The shoulder section minimizes contact between the substrate support and lift pin guide hole, thereby reducing pin scratching, particle generation, component wear, and increasing the useful life of the pin. In another embodiment, a flat-bottom tip is provided to promote self-standing of the lift pin, reducing pin tilting or leaning of the lift pin within the guide hole.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: May 3, 2005
    Assignee: Applied Materials, Inc.
    Inventors: David T. Or, Keith K. Koai, Hiroyuki Takahama, Takahiro Ito, Koji Ota, Hiroshi Sato
  • Publication number: 20040177813
    Abstract: An apparatus for positioning a substrate support within a processing chamber is provided. In one embodiment, an apparatus for positioning a substrate support includes a gimbal mechanism having radially aligned clamping that substantially prevents movement from a pre-defined plane of a substrate support coupled to the gimbal mechanism during clamping. In another embodiment, an apparatus for positioning a substrate support includes substrate support disposed in a processing chamber. A stem, coupled to the substrate support, extends through the processing chamber and is coupled to a gimbal assembly. The gimbal assembly has a radial clamping mechanism is adapted to adjust a planar orientation of the substrate support about a plurality of axes without exerting rotational moments on the substrate support during clamping. A bearing assembly, having a first carriage block and a second carriage block, is coupled to the gimbal assembly.
    Type: Application
    Filed: March 12, 2003
    Publication date: September 16, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Eric W. Schieve, Keith K. Koai, David T. Or, Rene T. Correa
  • Publication number: 20040045509
    Abstract: A substrate support is provided that features a lift pin having at least one larger diameter shoulder section that forms a relief region between the lift pin and a guide hole disposed through a substrate support. The shoulder section minimizes contact between the substrate support and lift pin guide hole, thereby reducing pin scratching, particle generation, component wear, and increasing the useful life of the pin. In another embodiment, a flat-bottom tip is provided to promote self-standing of the lift pin, reducing pin tilting or leaning of the lift pin within the guide hole.
    Type: Application
    Filed: September 10, 2002
    Publication date: March 11, 2004
    Inventors: David T. Or, Keith K. Koai, Hiroyuki Takahama, Takahiro Ito, Koji Ota, Hiroshi Sato
  • Patent number: 6364949
    Abstract: The present invention relates to plasma-enhanced chemical vapor deposition (PECVD) and related chamber hardware. Embodiments of the present invention include a PECVD system for depositing a film of titanium nitride from a TDMAT precursor. The present invention broadly provides a chamber, a gas delivery assembly, a pedestal which supports a substrate, and a plasma system to process substrates. In general, the invention includes a chamber body and a gas delivery assembly disposed thereon to define a chamber cavity. A pedestal movably disposed within the chamber cavity is adapted to support a substrate during processing. The gas delivery assembly is supported by the chamber body and includes a temperature control plate and a showerhead mounted thereto. Preferably, the interface between the showerhead and temperature control plate is parallel to a radial direction of the gas delivery assembly to accommodate lateral thermal expansion without separation of the showerhead and the temperature control plate.
    Type: Grant
    Filed: October 19, 1999
    Date of Patent: April 2, 2002
    Assignee: Applied Materials, Inc.
    Inventors: David T. Or, Keith K. Koai, Fufa Chen, Lawrence C. Lei
  • Patent number: 6365495
    Abstract: A process for chemical vapor deposition of titanium nitride film using thermal decomposition of a metal-organic compound is disclosed. In particular, the deposition of titanium nitride film from tetrakis dimethylamino-titanium (TDMAT) is performed at a temperature preferably below 350° C. in the presence of helium and nitrogen. The process is performed at a total pressure of about 5 torr, a nitrogen dilutant gas flow of at least 500 sccm, preferably about 1000 sccm, and an edge purge gas flow of at least 500 sccm. These process parameters, coupled with an improved thermal conduction between the wafer and the heated pedestal, lead to a conformal deposition of titanium nitride film at a rate of at least 6 Å/sec.
    Type: Grant
    Filed: February 9, 1999
    Date of Patent: April 2, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Shulin Wang, Huan Luo, Keith K. Koai, Ming Xi, Mei Chang, Russell C. Ellwanger
  • Publication number: 20020001928
    Abstract: A process for chemical vapor deposition of titanium nitride film using thermal decomposition of a metal-organic compound is disclosed. In particular, the deposition of titanium nitride film from tetrakis dimethylamino-titanium (TDMAT) is performed at a temperature preferably below 350° C. in the presence of helium and nitrogen. The process is performed at a total pressure of about 5 torr, a nitrogen dilutant gas flow of at least 500 sccm, preferably about 1000 sccm, and an edge purge gas flow of at least 500 sccm. These process parameters, coupled with an improved thermal conduction between the wafer and the heated pedestal, lead to a conformal deposition of titanium nitride film at a rate of at least 6 Å/sec.
    Type: Application
    Filed: February 9, 1999
    Publication date: January 3, 2002
    Inventors: SHULIN WANG, HUAN LUO, KEITH K. KOAI, MING XI, MEI CHANG, RUSSELL C. ELLWANGER
  • Patent number: 6176930
    Abstract: An apparatus and method for controlling a flow of process material to a deposition chamber. The apparatus comprises an injector valve, disposed between the process material source and the deposition chamber. The injector valve controls the flow of precursor material by repeatedly opening and closing the injector valve with a predetermined duty cycle. The apparatus further comprises an evaporator coupled to the injector valve for evaporating the precursor.
    Type: Grant
    Filed: March 4, 1999
    Date of Patent: January 23, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Keith K. Koai, Tung-Ching Tseng, James J. Chen, Mark S. Johnson, John Schmitt, Sean Li
  • Patent number: 6159299
    Abstract: A wafer pedestal with a purge ring that circumscribes a peripheral edge of the wafer pedestal. The purge ring contains plurality of passages that are located proximate the peripheral edge of said wafer pedestal such that purge gas is directed towards the peripheral edge. Additionally, the purge ring cooperates with an edge ring assembly that circumscribes the purge ring. The purge ring and the edge ring assembly allow a dual-purge flow pattern to be established, which significantly reduces the accumulation of undesirable deposits upon the wafer pedestal.
    Type: Grant
    Filed: February 9, 1999
    Date of Patent: December 12, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Keith K. Koai, Lawrence Chung-Lai Lei, Russell C. Ellwanger
  • Patent number: D568914
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: May 13, 2008
    Assignee: Applied Materials, Inc.
    Inventors: David T. Or, Keith K. Koai, Hiroyuki Takahama, Takahiro Ito, Koji Ota, Hiroshi Sato