Patents by Inventor Keith Kwong Hon Wong

Keith Kwong Hon Wong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120187420
    Abstract: An electrical device is provided that in one embodiment includes a p-type semiconductor device having a first gate structure that includes a gate dielectric that is present on the semiconductor substrate, a p-type work function metal layer, a metal layer composed of titanium and aluminum, and a metal fill composed of aluminum. An n-type semiconductor device is also present on the semiconductor substrate that includes a second gate structure that includes a gate dielectric, a metal layer composed of titanium and aluminum, and a metal fill composed of aluminum. An interlevel dielectric is present over the semiconductor substrate. The interlevel dielectric includes interconnects to the source and drain regions of the p-type and n-type semiconductor devices. The interconnects are composed of a metal layer composed of titanium and aluminum, and a metal fill composed of aluminum. The present disclosure also provides a method of forming the aforementioned structure.
    Type: Application
    Filed: March 23, 2012
    Publication date: July 26, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Zhengwen Li, Michael P. Chudzik, Unoh Kwon, Filippos Papadatos, Andrew H. Simon, Keith Kwong Hon Wong
  • Publication number: 20120181630
    Abstract: Replacement gate work function material stacks are provided, which provides a work function about the energy level of the conduction band of silicon. After removal of a disposable gate stack, a gate dielectric layer is formed in a gate cavity. A metallic compound layer including a metal and a non-metal element is deposited directly on the gate dielectric layer. At least one barrier layer and a conductive material layer is deposited and planarized to fill the gate cavity. The metallic compound layer includes a material having a work function about 4.4 eV or less, and can include a material selected from tantalum carbide and a hafnium-silicon alloy. Thus, the metallic compound layer can provide a work function that enhances the performance of an n-type field effect transistor employing a silicon channel.
    Type: Application
    Filed: January 14, 2011
    Publication date: July 19, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Michael P. Chudzik, Rishikesh Krishnan, Siddarth A. Krishnan, Unoh Kwon, Keith Kwong Hon Wong
  • Publication number: 20120153482
    Abstract: A contact structure and a method of forming the contact structure. The structure includes: a silicide layer on and in direct physical contact with a top substrate surface of a substrate; an electrically insulating layer on the substrate; and an aluminum plug within the insulating layer. The aluminum plug has a thickness not exceeding 25 nanometers in a direction perpendicular to the top substrate surface. The aluminum plug extends from a top surface of the silicide layer to a top surface of the insulating layer. The aluminum plug is in direct physical contact with the top surface of the silicide layer and is in direct physical contact with the silicide layer. The method includes: forming the silicide layer on and in direct physical contact with the top substrate surface of the substrate; forming the electrically insulating layer on the substrate; and forming the aluminum plug within the insulating layer.
    Type: Application
    Filed: February 27, 2012
    Publication date: June 21, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ying Li, Keith Kwong Hon Wong, Chih-Chao Yang
  • Publication number: 20120139062
    Abstract: A method of forming a semiconductor device is provided that includes forming a replacement gate structure on portion a substrate, wherein source regions and drain regions are formed on opposing sides of the portion of the substrate that the replacement gate structure is formed on. An intralevel dielectric is formed on the substrate having an upper surface that is coplanar with an upper surface of the replacement gate structure. The replacement gate structure is removed to provide an opening to an exposed portion of the substrate. A high-k dielectric spacer is formed on sidewalls of the opening, and a gate dielectric is formed on the exposed portion of the substrate. Contacts are formed through the intralevel dielectric layer to at least one of the source region and the drain region, wherein the etch that provides the opening for the contacts is selective to the high-k dielectric spacer and the high-k dielectric capping layer.
    Type: Application
    Filed: December 2, 2010
    Publication date: June 7, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jun Yuan, Dechao Guo, Keith Kwong Hon Wong, Yanfeng Wang, Gan Wang
  • Publication number: 20120126366
    Abstract: An antifuse structure and methods of forming contacts within the antifuse structure. The antifuse structure includes a substrate having an overlying metal layer, a dielectric layer formed on an upper surface of the metal layer, and a contact formed of contact material within a contact via etched through the dielectric layer into the metal layer. The contact via includes a metal material at a bottom surface of the contact via and an untreated or partially treated metal precursor on top of the metal material.
    Type: Application
    Filed: January 27, 2012
    Publication date: May 24, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Terence L. Kane, Michael P. Tenney, Yun-Yu Wang, Keith Kwong Hon Wong
  • Publication number: 20120129340
    Abstract: An antifuse structure and methods of forming contacts within the antifuse structure. The antifuse structure includes a substrate having an overlying metal layer, a dielectric layer formed on an upper surface of the metal layer, and a contact formed of contact material within a contact via etched through the dielectric layer into the metal layer. The contact via includes a metal material at a bottom surface of the contact via and an untreated or partially treated metal precursor on top of the metal material.
    Type: Application
    Filed: January 27, 2012
    Publication date: May 24, 2012
    Applicant: International Business Machines Corporation
    Inventors: Terence L. Kane, Michael P. Tenney, Yun-Yu Wang, Keith Kwong Hon Wong
  • Publication number: 20120126367
    Abstract: An antifuse structure and methods of forming contacts within the antifuse structure. The antifuse structure includes a substrate having an overlying metal layer, a dielectric layer formed on an upper surface of the metal layer, and a contact formed of contact material within a contact via etched through the dielectric layer into the metal layer. The contact via includes a metal material at a bottom surface of the contact via and an untreated or partially treated metal precursor on top of the metal material.
    Type: Application
    Filed: January 27, 2012
    Publication date: May 24, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Terence L. Kane, Michael P. Tenney, Yun-Yu Wang, Keith Kwong Hon Wong
  • Patent number: 8183145
    Abstract: Methods and a structure. A method of forming contact structure includes depositing a silicide layer onto a substrate; depositing an electrically insulating layer over a first surface of the silicide layer; forming a via through the insulating layer extending to the first surface; depositing an electrically conductive layer covering a bottom and at least one vertical wall of the via; removing the conductive layer from the bottom; and filling the via with aluminum directly contacting the silicide layer. A structure includes: a silicide layer disposed on a substrate; an electrically insulating layer disposed over the silicide layer; an aluminum plug extending through the insulating layer and directly contacting the silicide layer; and an electrically conductive layer disposed between the plug and the insulating layer. Also included is a method where an aluminum layer grows selectively from a silicide layer and at least one sidewall of a trench.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: May 22, 2012
    Assignee: International Business Machines Corporation
    Inventors: Ying Li, Keith Kwong Hon Wong, Chih-Chao Yang
  • Publication number: 20120119266
    Abstract: A field effect transistor device includes a gate stack portion disposed on a substrate, and a channel region in the substrate having a depth partially defined by the gate stack portion and a silicon region of the substrate, the silicon region having a sloped profile such that a distal regions of the channel region have greater depth than a medial region of the channel region.
    Type: Application
    Filed: November 12, 2010
    Publication date: May 17, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dechao Guo, Pranita Kulkarni, Philip J. Oldiges, Alexander Reznicek, Keith Kwong Hon Wong
  • Publication number: 20120122280
    Abstract: An antifuse structure and methods of forming contacts within the antifuse structure. The antifuse structure includes a substrate having an overlying metal layer, a dielectric layer formed on an upper surface of the metal layer, and a contact formed of contact material within a contact via etched through the dielectric layer into the metal layer. The contact via includes a metal material at a bottom surface of the contact via and an untreated or partially treated metal precursor on top of the metal material.
    Type: Application
    Filed: January 27, 2012
    Publication date: May 17, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Terence L. Kane, Michael P. Tenney, Yun-Yu Wang, Keith Kwong Hon Wong
  • Publication number: 20120119204
    Abstract: Replacement gate stacks are provided, which increase the work function of the gate electrode of a p-type field effect transistor (PFET). In one embodiment, the work function metal stack includes a titanium-oxide-nitride layer located between a lower titanium nitride layer and an upper titanium nitride layer. The stack of the lower titanium nitride layer, the titanium-oxide-nitride layer, and the upper titanium nitride layer produces the unexpected result of increasing the work function of the work function metal stack significantly. In another embodiment, the work function metal stack includes an aluminum layer deposited at a temperature not greater than 420° C. The aluminum layer deposited at a temperature not greater than 420° C. produces the unexpected result of increasing the work function of the work function metal stack significantly.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 17, 2012
    Applicant: International Business Machines Corporation
    Inventors: Keith Kwong Hon Wong, Michael P. Chudzik, Unoh Kwon
  • Publication number: 20120112279
    Abstract: A method for contacting an FET device is disclosed. The method includes vertically recessing the device isolation, which exposes a sidewall surface on both the source and the drain. Next, silicidation is performed, resulting in a silicide layer covering both the top surface and the sidewall surface of the source and the drain. Next, metallic contacts are applied in such manner that they engage the silicide layer on both its top and on its sidewall surface. A device characterized as being an FET device structure with enlarged contact areas is also disclosed. The device has a vertically recessed isolation, thereby having an exposed sidewall surface on both the source and the drain. A silicide layer is covering both the top surface and the sidewall surface of both the source and the drain. Metallic contacts to the device engage the silicide on its top surface and on its sidewall surface.
    Type: Application
    Filed: November 6, 2010
    Publication date: May 10, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Bruce B. Doris, Keith Kwong Hon Wong, Ying Zhang
  • Publication number: 20120104469
    Abstract: In a replacement gate scheme, a continuous material layer is deposited on a bottom surface and a sidewall surface in a gate cavity. A vertical portion of the continuous material layer is removed to form a gate component of which a vertical portion does not extend to a top of the gate cavity. The gate component can be employed as a gate dielectric or a work function metal portion to form a gate structure that enhances performance of a replacement gate field effect transistor.
    Type: Application
    Filed: October 27, 2010
    Publication date: May 3, 2012
    Applicant: International Business Machines Corporation
    Inventors: Zhengwen Li, Dechao Guo, Randolph F. Knarr, Chengwen Pei, Gan Wang, Yanfeng Wang, Keith Kwong Hon Wong, Jian Yu, Jun Yuan
  • Publication number: 20120092771
    Abstract: An embedded vertical optical grating, a semiconductor device including the embedded vertical optical grating and a method for forming the same. The method for forming the embedded optical grating within a substrate includes depositing a hard mask layer on the substrate, patterning at least one opening within the hard mask layer, vertically etching a plurality of scallops within the substrate corresponding to the at least one opening within the hard mask layer, removing the hard mask layer, and forming an oxide layer within the plurality of scallops to form the embedded vertical optical grating.
    Type: Application
    Filed: October 18, 2010
    Publication date: April 19, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Fei Liu, Qiqing (Christine) Ouyang, Keith Kwong Hon Wong
  • Patent number: 8138041
    Abstract: Structure and method of improving the performance of metal gate devices by depositing an in-situ silicon (Si) cap are disclosed. A wafer including a substrate and a dielectric layer is heated through a degas process, and then cooled to approximately room temperature. A metal layer is then deposited, and then an in-situ Si cap is deposited thereon. The Si cap is deposited without vacuum break, i.e., in the same mainframe or in the same chamber, as the heating, cooling and metal deposition processes. As such, the amount of oxygen available for interlayer oxide regrowth during subsequent processing is reduced as well as the amount oxygen trapped in the metal gate.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: March 20, 2012
    Assignee: International Business Machines Corporation
    Inventors: Michael P. Chudzik, Troy Graves-Abe, Rashmi Jha, Renee T. Mo, Keith Kwong Hon Wong
  • Publication number: 20120061772
    Abstract: A transistor is fabricated by removing a polysilicon gate over a doped region of a substrate and forming a mask layer over the substrate such that the doped region is exposed through a hole within the mask layer. An interfacial layer is deposited on top and side surfaces of the mask layer and on a top surface of the doped region. A layer adapted to reduce a threshold voltage of the transistor and/or reduce a thickness of an inversion layer of the transistor is deposited on the interfacial layer. The layer includes metal, such as aluminum or lanthanum, which diffuses into the interfacial layer, and also includes oxide, such as hafnium oxide. A conductive plug, such as a metal plug, is formed within the hole of the mask layer. The interfacial layer, the layer on the interfacial layer, and the conductive plug are a replacement gate of the transistor.
    Type: Application
    Filed: September 11, 2010
    Publication date: March 15, 2012
    Inventors: Dechao Guo, Keith Kwong Hon Wong
  • Publication number: 20120061234
    Abstract: A method for cleaning a deposition chamber includes forming a deposited layer over an interior surface of the deposition chamber, wherein the deposited layer has a deposited layer stress and a deposited layer modulus; forming a cleaning layer over the deposited layer, wherein a material comprising the cleaning layer is selected such that the cleaning layer adheres to the deposited layer, and has a cleaning layer stress and a cleaning layer modulus, wherein the cleaning layer stress is higher than the deposited layer stress, and wherein the cleaning layer modulus is higher than the deposited layer modulus; and removing the deposited layer and the cleaning layer from the interior of the deposition chamber.
    Type: Application
    Filed: September 9, 2010
    Publication date: March 15, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tien-Jen Cheng, Zhengwen Li, Keith Kwong Hon Wong
  • Patent number: 8133810
    Abstract: An interconnect structure is provided in which the conductive features embedded within a dielectric material are capped with a metallic capping layer, yet no metallic residue is present on the surface of the dielectric material in the final structure. The inventive interconnect structure has improved dielectric breakdown strength as compared to prior art interconnect structures. Moreover, the inventive interconnect structure has better reliability and technology extendibility for the semiconductor industry. The inventive interconnect structure includes a dielectric material having at least one metallic capped conductive feature embedded therein, wherein a top portion of said at least one metallic capped conductive feature extends above an upper surface of the dielectric material. A dielectric capping layer is located on the dielectric material and it encapsulates the top portion of said at least one metallic capped conductive feature that extends above the upper surface of dielectric material.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: March 13, 2012
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Daniel C. Edelstein, Keith Kwong Hon Wong, Haining Yang
  • Patent number: 8129842
    Abstract: The present invention provides a semiconductor interconnect structure with improved mechanical strength at the capping layer/dielectric layer/diffusion barrier interface. The interconnect structure has Cu diffusion barrier material embedded in the Cu capping material. The barrier can be either partially embedded in the cap layer or completely embedded in the capping layer.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: March 6, 2012
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Mukta Ghate Farooq, Keith Kwong Hon Wong, Haining Yang
  • Patent number: 8125048
    Abstract: An antifuse structure and methods of forming contacts within the antifuse structure. The antifuse structure includes a substrate having an overlying metal layer, a dielectric layer formed on an upper surface of the metal layer, and a contact formed of contact material within a contact via etched through the dielectric layer into the metal layer. The contact via includes a metal material at a bottom surface of the contact via and an untreated or partially treated metal precursor on top of the metal material.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: February 28, 2012
    Assignee: International Business Machines Corporation
    Inventors: Terence L. Kane, Michael P. Tenney, Yun-Yu Wang, Keith Kwong Hon Wong