Patents by Inventor Keith L. Gordon

Keith L. Gordon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230091338
    Abstract: Compositions and methods are provided for an inducible, high efficiency intra-genomic homologous recombination (IGHR) system in plants, that can be used for non-chimeric, heritable gene targeting. The advantage of IGHR approach to targeted integration is that every cell contains donor DNA and nuclease-encoding sequences, so that there are many potentially homology-directed targeting events that can occur during plant development.
    Type: Application
    Filed: February 22, 2021
    Publication date: March 23, 2023
    Applicant: PIONEER HI-BRED INTERNATIONAL, INC.
    Inventors: AJITH ANAND, MAREN L ARLING, PIERLUIGI BARONE, HYEON-JE CHO, WILLIAM JAMES GORDON-KAMM, SANDEEP KUMAR, BRIAN LENDERTS, KEITH S LOWE, SERGEI SVITASHEV, XINLI EMILY WU
  • Publication number: 20230042672
    Abstract: Disclosed herein are composite materials comprising a siliconized carbon fiber fabric and polymeric sizing. In one embodiment, the polymeric sizing can be bismaleimide, an epoxy resin, or both. In another embodiment, the composite materials possess mechanical strength and durability and acceptable performance after extended periods of time in storage. In another embodiment, disclosed herein is a method for making the composite materials, the method including at least the steps of (a) siliconizing the carbon fiber fabric to produce a siliconized carbon fiber fabric; and (b) applying a polymeric sizing material to the siliconized carbon fiber fabric to create the composite material. In yet another embodiment, disclosed herein are composite materials formed by the disclosed process and articles comprising the composite materials including, but not limited to, camping equipment, military equipment, clothing, sporting equipment, aerospace equipment, wrinkle-free fabric, or any combination thereof.
    Type: Application
    Filed: August 5, 2022
    Publication date: February 9, 2023
    Inventors: Jin Ho Kang, Keith L. Gordon, Jeffrey A. Hinkley, Sheila A. Thibeault
  • Patent number: 11192667
    Abstract: Various embodiments provide multi-layered self-healing materials, capable of repairing puncture damage. The multi-layered self-healing materials, capable of repairing puncture damage of the various embodiments may be constructed by sandwiching a reactive (e.g., oxygen sensitive) liquid monomer formulation between two solid polymer panels, such as a polymer panel of Barex 210 IN (PBG) serving as the front layer panel and a polymer panel of Surlyn® 8940 serving as the back layer panel. The various embodiments may provide methods to produce multi-layered healing polymer systems. The various embodiments may provide a two-tier, self-healing material system that provides a non-intrusive capability to mitigate mid to high velocity impact damage in structures.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: December 7, 2021
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Keith L. Gordon, Scott R. Zavada, Timothy F. Scott
  • Patent number: 11001684
    Abstract: One aspect of the present invention is a puncture healing polymer blend comprising a self-healing first polymer material having sufficient melt elasticity to snap back and close a hole formed by a projectile passing through the material at a velocity sufficient to produce a local melt state in the first polymer material. The puncture healing polymer blend further includes a non-self-healing second material that is blended with the first polymer material. The blend of self-healing first polymer material and second material is capable of self-healing, and may have improved material properties relative to known self-healing polymers.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: May 11, 2021
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Keith L. Gordon, Emilie J. Siochi, Dennis C. Working, Russell W. Smith
  • Patent number: 10745509
    Abstract: Methods are provided to produce new mechanoresponsive healing systems. Additionally, various embodiments provide a two tier self-healing material system concept that provides a non-intrusive method to mitigate impact damage in a structure ranging from low velocity impact damage (e.g., crack damage) to high velocity impact damage (e.g., ballistic damage.) The various embodiments provide the mechanophore linked polymer PBG-BCB-PBG. The various embodiments provide methods for synthesizing PBG-BCB-PBG.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: August 18, 2020
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Keith L. Gordon, Emilie J. Siochi
  • Patent number: 10450432
    Abstract: A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: October 22, 2019
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Keith L. Gordon, Emilie J. Siochi, Brian W. Grimsley, Roberto J. Cano, Michael W. Czabaj
  • Publication number: 20180186916
    Abstract: Methods are provided to produce new mechanoresponsive healing systems. Additionally, various embodiments provide a two tier self-healing material system concept that provides a non-intrusive method to mitigate impact damage in a structure ranging from low velocity impact damage (e.g., crack damage) to high velocity impact damage (e.g., ballistic damage.) The various embodiments provide the mechanophore linked polymer PBG-BCB-PBG. The various embodiments provide methods for synthesizing PBG-BCB-PBG.
    Type: Application
    Filed: March 1, 2018
    Publication date: July 5, 2018
    Inventors: KEITH L. GORDON, EMILIE J. SIOCHI
  • Patent number: 9908962
    Abstract: Methods are provided to produce new mechanoresponsive healing systems. Additionally, various embodiments provide a two tier self-healing material system concept that provides a non-intrusive method to mitigate impact damage in a structure ranging from low velocity impact damage (e.g., crack damage) to high velocity impact damage (e.g., ballistic damage.) The various embodiments provide the mechanophore linked polymer PBG-BCB-PBG. The various embodiments provide methods for synthesizing PBG-BCB-PBG.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: March 6, 2018
    Assignee: The United States of America as represented by the Administrator of NASA
    Inventors: Keith L. Gordon, Emilie J. Siochi
  • Publication number: 20180051147
    Abstract: A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.
    Type: Application
    Filed: October 10, 2017
    Publication date: February 22, 2018
    Inventors: Keith L. Gordon, Emile J. Siochi, Brian W. Grimsley, Roberto J. Cano, Michael W. Czabaj
  • Patent number: 9783648
    Abstract: A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: October 10, 2017
    Assignee: The United States of America as represented by the Administrator of the NASA
    Inventors: Keith L. Gordon, Emilie J. Siochi, Brian W. Grimsley, Roberto J. Cano, Michael W. Czabaj
  • Patent number: 9734932
    Abstract: Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly (benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: August 15, 2017
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Keith L. Gordon, Jin Ho Kang, Cheol Park, Peter T. Lillehei, Joycelyn S. Harrison
  • Patent number: 9550873
    Abstract: Some implementations provide a composite material that includes a first material and a second material. In some implementations, the composite material is a metamaterial. The first material includes a chiral polymer (e.g., crystalline chiral helical polymer, poly-?-benzyl-L-glutamate (PBLG), poly-L-lactic acid (PLA), polypeptide, and/or polyacetylene). The second material is within the chiral polymer. The first material and the second material are configured to provide an effective index of refraction value for the composite material of 1 or less. In some implementations, the effective index of refraction value for the composite material is negative. In some implementations, the effective index of refraction value for the composite material of 1 or less is at least in a wavelength of one of at least a visible spectrum, an infrared spectrum, a microwave spectrum, and/or an ultraviolet spectrum.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: January 24, 2017
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Cheol Park, Jin Ho Kang, Keith L. Gordon, Godfrey Sauti, Sharon E. Lowther, Robert G. Bryant
  • Publication number: 20160167811
    Abstract: Various embodiments provide multi-layered self-healing materials, capable of repairing puncture damage. The multi-layered self-healing materials, capable of repairing puncture damage of the various embodiments may be constructed by sandwiching a reactive (e.g., oxygen sensitive) liquid monomer formulation between two solid polymer panels, such as a polymer panel of Barex 210 IN (PBG) serving as the front layer panel and a polymer panel of Surlyn® 8940 serving as the back layer panel. The various embodiments may provide methods to produce multi-layered healing polymer systems. The various embodiments may provide a two-tier, self-healing material system that provides a non-intrusive capability to mitigate mid to high velocity impact damage in structures.
    Type: Application
    Filed: December 15, 2015
    Publication date: June 16, 2016
    Inventors: Keith L. Gordon, Scott R. Zavada, Timothy F. Scott
  • Publication number: 20160152809
    Abstract: One aspect of the present invention is a puncture healing polymer blend comprising a self-healing first polymer material having sufficient melt elasticity to snap back and close a hole formed by a projectile passing through the material at a velocity sufficient to produce a local melt state in the first polymer material. The puncture healing polymer blend further includes a non-self-healing second material that is blended with the first polymer material. The blend of self-healing first polymer material and second material is capable of self-healing, and may have improved material properties relative to known self-healing polymers.
    Type: Application
    Filed: December 1, 2015
    Publication date: June 2, 2016
    Inventors: Keith L. Gordon, EMILIE J. SIOCHI, DENNIS C. WORKING, RUSSELL W. SMITH
  • Publication number: 20160032066
    Abstract: A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.
    Type: Application
    Filed: October 13, 2015
    Publication date: February 4, 2016
    Inventors: Keith L. Gordon, Emilie J. Siochi, Brian W. Grimsley, Roberto J. Cano, Michael W. Czabaj
  • Publication number: 20160009845
    Abstract: Methods are provided to produce new mechanoresponsive healing systems. Additionally, various embodiments provide a two tier self-healing material system concept that provides a non-intrusive method to mitigate impact damage in a structure ranging from low velocity impact damage (e.g., crack damage) to high velocity impact damage (e.g., ballistic damage.) The various embodiments provide the mechanophore linked polymer PBG-BCB-PBG. The various embodiments provide methods for synthesizing PBG-BCB-PBG.
    Type: Application
    Filed: July 11, 2014
    Publication date: January 14, 2016
    Inventors: Keith L. Gordon, Emilie J. Siochi
  • Patent number: 9156957
    Abstract: A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: October 13, 2015
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Keith L. Gordon, Emilie J. Siochi, Brian W. Grimsley, Roberto J. Cano, Michael W. Czabaj
  • Publication number: 20140287904
    Abstract: Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly (benzimidazole) (FBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.
    Type: Application
    Filed: April 15, 2014
    Publication date: September 25, 2014
    Applicant: U.S.A. as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Keith L. GORDON, Jin Ho KANG, Cheol PARK, Peter T. LILLEHEI, Joycelyn S. HARRISON
  • Patent number: 8696940
    Abstract: Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: April 15, 2014
    Assignee: United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Keith L. Gordon, Jin Ho Kang, Cheol Park, Peter T. Lillehei, Joycelyn S. Harrison
  • Publication number: 20140017480
    Abstract: Some implementations provide a composite material that includes a first material and a second material. In some implementations, the composite material is a metamaterial. The first material includes a chiral polymer (e.g., crystalline chiral helical polymer, poly-?-benzyl-L-glutamate (PBLG), poly-L-lactic acid (PLA), polypeptide, and/or polyacetylene). The second material is within the chiral polymer. The first material and the second material are configured to provide an effective index of refraction value for the composite material of 1 or less. In some implementations, the effective index of refraction value for the composite material is negative. In some implementations, the effective index of refraction value for the composite material of 1 or less is at least in a wavelength of one of at least a visible spectrum, an infrared spectrum, a microwave spectrum, and/or an ultraviolet spectrum.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 16, 2014
    Inventors: Cheol Park, Jin Ho Kang, Keith L. Gordon, Godfrey Sauti, Sharon E. Lowther, Robert G. Bryant