Patents by Inventor Keith M. Cutler

Keith M. Cutler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11640862
    Abstract: A method utilizes a funnel system and robotic end effector grippers to feed an unjacketed portion of a shielded cable through a sleeve. The funnel is designed with one or more thin extensions (hereinafter “prongs”) on which a sleeve is placed prior to a cable entering the funnel. Preferably two or more prongs are employed, although a single prong may be used if properly configured to both guide a cable and fit between the sleeve and cable. The prongs close off the uneven surface internal to a sleeve and provide a smooth surface for the cable to slide along and through the sleeve, preventing any damage to the exposed shielding. The sleeve is picked up and held on the prongs using a robotic end effector. If the sleeve is a solder sleeve, the robotic end effector has grippers designed to make contact with the portions of the solder sleeve that are between the insulating rings and the central solder ring.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: May 2, 2023
    Assignee: The Boeing Company
    Inventors: Grace L. Duncan, Lars E. Blacken, Keith M. Cutler, Bradley J. Mitchell
  • Patent number: 11489309
    Abstract: Systems and methods for designing and assembling form boards with attached wire routing devices for use in wire bundle assembly. The assembly method comprises: (a) establishing a coordinate system of a form board having a multiplicity of holes; (b) using a computer system to determine locations of form board devices of different types with reference to the coordinate system of the form board based on engineering data specifying a wire bundle configuration; and (c) fastening the form board devices of different types to respective holes of the form board having centers closest to respective locations determined in step (b). The form board devices may be inserted robotically or manually.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: November 1, 2022
    Assignee: The Boeing Company
    Inventors: Damien O. Martin, Lars E. Blacken, Bradley J. Mitchell, Grace L. Duncan, Eerik J. Helmick, Keith M. Cutler, Randall V. Fraker, Alexey S. Meerov, John R. Porter
  • Patent number: 11328842
    Abstract: Systems and methods for designing and assembling form boards with attached wire routing devices for use in wire bundle assembly. The assembly method comprises: (a) establishing a coordinate system of a form board having a multiplicity of holes; (b) using a computer system to determine locations of form board devices of different types with reference to the coordinate system of the form board based on engineering data specifying a wire bundle configuration; and (c) fastening the form board devices of different types to respective holes of the form board having centers closest to respective locations determined in step (b). The form board devices may be inserted robotically or manually.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: May 10, 2022
    Assignee: The Boeing Company
    Inventors: Lars E. Blacken, Damien O. Martin, Eerik J. Helmick, Keith M. Cutler, John R. Porter
  • Publication number: 20210383950
    Abstract: A method utilizes a funnel system and robotic end effector grippers to feed an unjacketed portion of a shielded cable through a sleeve. The funnel is designed with one or more thin extensions (hereinafter “prongs”) on which a sleeve is placed prior to a cable entering the funnel. Preferably two or more prongs are employed, although a single prong may be used if properly configured to both guide a cable and fit between the sleeve and cable. The prongs close off the uneven surface internal to a sleeve and provide a smooth surface for the cable to slide along and through the sleeve, preventing any damage to the exposed shielding. The sleeve is picked up and held on the prongs using a robotic end effector. If the sleeve is a solder sleeve, the robotic end effector has grippers designed to make contact with the portions of the solder sleeve that are between the insulating rings and the central solder ring.
    Type: Application
    Filed: August 26, 2021
    Publication date: December 9, 2021
    Applicant: The Boeing Company
    Inventors: Grace L. Duncan, Lars E. Blacken, Keith M. Cutler, Bradley J. Mitchell
  • Patent number: 11120928
    Abstract: A method utilizes a funnel system and robotic end effector grippers to feed an unjacketed portion of a shielded cable through a sleeve. The funnel is designed with one or more thin extensions (hereinafter “prongs”) on which a sleeve is placed prior to a cable entering the funnel. Preferably two or more prongs are employed, although a single prong may be used if properly configured to both guide a cable and fit between the sleeve and cable. The prongs close off the uneven surface internal to a sleeve and provide a smooth surface for the cable to slide along and through the sleeve, preventing any damage to the exposed shielding. The sleeve is picked up and held on the prongs using a robotic end effector. If the sleeve is a solder sleeve, the robotic end effector has grippers designed to make contact with the portions of the solder sleeve that are between the insulating rings and the central solder ring.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: September 14, 2021
    Assignee: The Boeing Company
    Inventors: Grace L. Duncan, Lars E. Blacken, Keith M. Cutler, Bradley J. Mitchell
  • Patent number: 11070019
    Abstract: An automated system for processing an end of a cable. The system includes: a cable delivery system; a cable processing module; a pallet supported by the cable delivery system; a drive wheel rotatably coupled to the pallet; a motor operatively coupled for driving rotation of the drive wheel; and an idler wheel rotatably coupled to the pallet and forming a nip with the drive wheel. The cable processing module includes cable processing equipment and a computer system. The computer system is configured to: (a) cause the drive wheel to rotate in a cable pushing direction to cause a specified length of cable to be inserted into the cable processing equipment; (b) activate the cable processing equipment to operate on the cable end; and (c) cause the drive wheel to rotate in a cable pulling direction to cause the length of cable to be removed from the cable processing equipment.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: July 20, 2021
    Assignee: The Boeing Company
    Inventors: Grace L. Duncan, Bradley J. Mitchell, Damien O. Martin, Dinh X. Tran, Eerik J. Helmick, Aphea Ann Thornton, Nick S. Evans, David S. Wright, Lars E. Blacken, Keith M. Cutler
  • Patent number: 11070007
    Abstract: A system configured to position a tip of a cable. The system includes: a cable delivery system; a cable tip positioning module situated at a workstation in proximity to the cable delivery system; a pair of wheels operable to push a cable into the cable tip positioning module when a cable is in a nip between the wheels; an apparatus configured to hold the wheels; a motor operatively coupled to drive rotation of the wheels; and a proximity sensor configured to issue a cable present signal indicating the proximity of a conductor in the cable. The cable tip positioning module comprises a computer system configured to activate the motor to drive rotation of the wheels in a cable pulling direction in response to issuance of the cable present signal.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: July 20, 2021
    Assignee: The Boeing Company
    Inventors: Grace L. Duncan, Bradley J. Mitchell, Lars E. Blacken, Keith M. Cutler
  • Publication number: 20210126418
    Abstract: Systems and methods for designing and assembling form boards with attached wire routing devices for use in wire bundle assembly. The assembly method comprises: (a) establishing a coordinate system of a form board having a multiplicity of holes; (b) using a computer system to determine locations of form board devices of different types with reference to the coordinate system of the form board based on engineering data specifying a wire bundle configuration; and (c) fastening the form board devices of different types to respective holes of the form board having centers closest to respective locations determined in step (b). The form board devices may be inserted robotically or manually.
    Type: Application
    Filed: October 28, 2019
    Publication date: April 29, 2021
    Applicant: The Boeing Company
    Inventors: Damien O. Martin, Lars E. Blacken, Bradley J. Mitchell, Grace L. Duncan, Eerik J. Helmick, Keith M. Cutler, Randall V. Fraker, Alexey S. Meerov, John R. Porter
  • Publication number: 20210125750
    Abstract: Systems and methods for designing and assembling form boards with attached wire routing devices for use in wire bundle assembly. The assembly method comprises: (a) establishing a coordinate system of a form board having a multiplicity of holes; (b) using a computer system to determine locations of form board devices of different types with reference to the coordinate system of the form board based on engineering data specifying a wire bundle configuration; and (c) fastening the form board devices of different types to respective holes of the form board having centers closest to respective locations determined in step (b). The form board devices may be inserted robotically or manually.
    Type: Application
    Filed: October 28, 2019
    Publication date: April 29, 2021
    Applicant: The Boeing Company
    Inventors: Lars E. Blacken, Damien O. Martin, Eerik J. Helmick, Keith M. Cutler, John R. Porter
  • Publication number: 20200161810
    Abstract: A system for processing an end of a cable. The system includes: a cable delivery system; a cable processing module; a pallet supported by the cable delivery system; a drive wheel rotatably coupled to the pallet; a motor operatively coupled for driving rotation of the drive wheel; and an idler wheel rotatably coupled to the pallet and forming a nip with the drive wheel. The cable processing module includes cable processing equipment configured to perform an operation on an end of a cable and a computer system. The computer system is configured to: (a) cause the drive wheel to rotate in a cable pushing direction to cause a specified length of cable to be inserted into the cable processing equipment; (b) activate the cable processing equipment to perform an operation on the inserted end of the cable; and (c) cause the drive wheel to rotate in a cable pulling direction to cause the specified length of cable to be removed from the cable processing equipment.
    Type: Application
    Filed: November 19, 2018
    Publication date: May 21, 2020
    Applicant: The Boeing Company
    Inventors: Grace L. Duncan, Bradley J. Mitchell, Lars E. Blacken, Keith M. Cutler
  • Publication number: 20200161824
    Abstract: An automated system for processing an end of a cable. The system includes: a cable delivery system; a cable processing module; a pallet supported by the cable delivery system; a drive wheel rotatably coupled to the pallet; a motor operatively coupled for driving rotation of the drive wheel; and an idler wheel rotatably coupled to the pallet and forming a nip with the drive wheel. The cable processing module includes cable processing equipment configured to perform an operation on an end of a cable and a computer system. The computer system is configured to: (a) cause the drive wheel to rotate in a cable pushing direction to cause a specified length of cable to be inserted into the cable processing equipment; (b) activate the cable processing equipment to perform an operation on the inserted end of the cable; and (c) cause the drive wheel to rotate in a cable pulling direction to cause the specified length of cable to be removed from the cable processing equipment.
    Type: Application
    Filed: November 19, 2018
    Publication date: May 21, 2020
    Applicant: The Boeing Company
    Inventors: Grace L. Duncan, Bradley J. Mitchell, Damien O. Martin, Dinh X. Tran, Eerik J. Helmick, Aphea Ann Thornton, Nick S. Evans, David S. Wright, Lars E. Blacken, Keith M. Cutler
  • Publication number: 20200161028
    Abstract: A method utilizes a funnel system and robotic end effector grippers to feed an unjacketed portion of a shielded cable through a sleeve. The funnel is designed with one or more thin extensions (hereinafter “prongs”) on which a sleeve is placed prior to a cable entering the funnel. Preferably two or more prongs are employed, although a single prong may be used if properly configured to both guide a cable and fit between the sleeve and cable. The prongs close off the uneven surface internal to a sleeve and provide a smooth surface for the cable to slide along and through the sleeve, preventing any damage to the exposed shielding. The sleeve is picked up and held on the prongs using a robotic end effector. If the sleeve is a solder sleeve, the robotic end effector has grippers designed to make contact with the portions of the solder sleeve that are between the insulating rings and the central solder ring.
    Type: Application
    Filed: November 19, 2018
    Publication date: May 21, 2020
    Applicant: The Boeing Company
    Inventors: Grace L. Duncan, Lars E. Blacken, Keith M. Cutler, Bradley J. Mitchell