Patents by Inventor Keith Miesel

Keith Miesel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120108998
    Abstract: A movement state of a patient is detected based on brain signals, such as an electroencephalogram (EEG) signal. In some examples, a brain signal within a dorsal-lateral prefrontal cortex of a brain of the patient indicative of prospective movement of the patient may be sensed in order to detect the movement state. The movement state may include the brain state that indicates the patient is intending on initiating movement, initiating movement, attempting to initiate movement or is actually moving. In some examples, upon detecting the movement state, a movement disorder therapy is delivered to the patient. In some examples, the therapy delivery is deactivated upon detecting the patient is no longer in a movement state or that the patient has successfully initiated movement. In addition, in some examples, the movement state detected based on the brain signals may be confirmed based on a signal from a motion sensor.
    Type: Application
    Filed: January 6, 2012
    Publication date: May 3, 2012
    Inventors: Gregory F. Molnar, Steven S. Gill, Keith A. Miesel, Mark S. Lent, Timothy J. Denison, Eric J. Panken, Carl D. Wahlstrand, Jonathan C. Werder
  • Publication number: 20120109099
    Abstract: A method of detecting a fault condition within an implantable medical pump comprises delivering therapeutic fluid using a medical pump comprising an actuation mechanism configured to be energized to provide a pump stroke, detecting a property associated with energizing the actuation mechanism, and determining whether the property associated with energizing the actuation mechanism indicates that a fault condition exists with the medical pump.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 3, 2012
    Applicant: Medtronic, Inc.
    Inventors: Charles R. Rogers, Irfan Z. Ali, Ronald L. Mezera, Keith A. Miesel, Scott A. Sarkinen, Nicholas R. Whitehead
  • Patent number: 8135473
    Abstract: A medical device, programmer, or other computing device may determine values of one or more activity and, in some embodiments, posture metrics for each therapy parameter set used by the medical device to deliver therapy. The metric values for a parameter set are determined based on signals generated by the sensors when that therapy parameter set was in use. Activity metric values may be associated with a postural category in addition to a therapy parameter set, and may indicate the duration and intensity of activity within one or more postural categories resulting from delivery of therapy according to a therapy parameter set. A posture metric for a therapy parameter set may indicate the fraction of time spent by the patient in various postures when the medical device used a therapy parameter set. The metric values may be used to evaluate the efficacy of the therapy parameter sets.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: March 13, 2012
    Assignee: Medtronic, Inc.
    Inventors: Keith A. Miesel, Kenneth T. Heruth, Gregory F. Molnar
  • Publication number: 20120053514
    Abstract: A therapeutic fluid delivery device that includes at least one controllable valve is generally described. In one example, an implantable therapeutic fluid delivery system includes a first fluid pathway configured to convey a first therapeutic fluid and a second fluid pathway configured to convey a second therapeutic fluid, the second fluid pathway being separate from the first fluid pathway. The therapeutic fluid delivery system includes a valve connected to the first fluid pathway and the second fluid pathway, and a processor configured to control actuation of the value to open and close the first fluid pathway and to open and close the second fluid pathway.
    Type: Application
    Filed: August 25, 2011
    Publication date: March 1, 2012
    Applicant: Medtronic, Inc.
    Inventors: Reginald D. Robinson, Mary E. Robischon, Bernard Q. Li, Irfan Z. Ali, Steven R. Christenson, Keith A. Miesel
  • Patent number: 8118748
    Abstract: Embodiments of the invention provide systems and methods for an implantable capacitive pressure sensor. Some embodiments of the invention include a capacitive pressure sensor capsule comprising a substrate, a conductive plate functionally coupled to the substrate, a conductive diaphragm spaced from the conductive plate and functionally coupled to the substrate, a lid hermetically sealed against the substrate, and pressure sensing circuitry disposed within a volume generally defined by the lid and the substrate. Embodiments of the invention also include a lead provided with an implantable pressure sensor capsule and a method of manufacturing a capacitive pressure sensor capsule.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: February 21, 2012
    Assignee: Medtronic, Inc.
    Inventors: Michael A. Schugt, Keith A. Miesel, Jeremy W. Burdon, Eric H. Bonde
  • Patent number: 8121694
    Abstract: A movement state of a patient is detected based on brain signals, such as an electroencephalogram (EEG) signal. In some examples, a brain signal within a dorsal-lateral prefrontal cortex of a brain of the patient indicative of prospective movement of the patient may be sensed in order to detect the movement state. The movement state may include the brain state that indicates the patient is intending on initiating movement, initiating movement, attempting to initiate movement or is actually moving. In some examples, upon detecting the movement state, a movement disorder therapy is delivered to the patient. In some examples, the therapy delivery is deactivated upon detecting the patient is no longer in a movement state or that the patient has successfully initiated movement. In addition, in some examples, the movement state detected based on the brain signals may be confirmed based on a signal from a motion sensor.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: February 21, 2012
    Assignee: Medtronic, Inc.
    Inventors: Gregory F. Molnar, Steven S. Gill, Keith A. Miesel, Mark S. Lent, Timothy J. Denison, Eric J. Panken, Carl D. Wahlstrand, Jonathan C. Werder
  • Publication number: 20120041510
    Abstract: The disclosure describes a therapeutic sphincter control system with a fluid tube pressure sensor. The system senses sphincter pressure and sends the information to a stimulator that is capable of stimulation therapy to control sphincter contractility, thus reducing unwanted urinary incontinence. Measuring sphincter pressure is accomplished through the use of a fluid-filled tube placed through the sphincter and attached to a module implanted within the bladder. Pressure within the tube is transduced to generate an electrical signal that is sent wirelessly to an implanted stimulator connected to a lead positioned near pelvic floor nerves. An external device may be used to wirelessly send information to the implanted stimulator and inhibit stimulation in order for the patient to empty the bladder. Pressure information and stimulation information may be recorded and reviewed for continued patient monitoring. In addition, the system may only include the pressure sensor to monitor patient pressure information.
    Type: Application
    Filed: October 24, 2011
    Publication date: February 16, 2012
    Applicant: Medtronic, Inc.
    Inventors: Martin T. Gerber, Keith A. Miesel
  • Publication number: 20120035496
    Abstract: This disclosure provides techniques for bladder sensing. In accordance with the techniques described in this disclosure, a device may measure the impedance of a bladder, determine the posture of a patient, and determine a status of the bladder based on the impedance and posture.
    Type: Application
    Filed: April 20, 2010
    Publication date: February 9, 2012
    Inventors: Timothy J. Denison, Keith A. Miesel
  • Publication number: 20120022340
    Abstract: A system includes one or more sensors and a processor. Each of the sensors generates a signal as a function of at least one physiological parameter of a patient that may discernibly change when the patient is asleep. The processor monitors the physiological parameters, and determines whether the patient is asleep based on the parameters. In some embodiments, the processor determines plurality of sleep metric values, each of which indicates a probability of the patient being asleep, based on each of a plurality of physiological parameters. The processor may average or otherwise combine the plurality of sleep metric values to provide an overall sleep metric value that is compared to a threshold value in order to determine whether the patient is asleep. In addition, an electroencephalogram signal may be used to identify sleep states of the patient.
    Type: Application
    Filed: September 30, 2011
    Publication date: January 26, 2012
    Applicant: Medtronic, Inc.
    Inventors: Kenneth T. Heruth, Keith A. Miesel, Jonathan C. Werder, Steve R. LaPorte, Nina M. Graves
  • Patent number: 8083730
    Abstract: An implantable medical device for delivering a therapeutic substance including a housing and a volume sensor assembly. The housing includes a stationary wall and maintains a reservoir containing the therapeutic substance and including a base wall movable relative to the stationary wall such that reservoir volume is a function of a spacing between the base wall and the stationary wall. The volume sensor assembly includes a cap, a shaft, a target, and circuitry. The cap defines a passage extending from an open end, and is mounted to the stationary wall such that the open end is open relative to a stationary wall inner face. The shaft has a first end attached to the base wall and a second end maintaining the target otherwise movably arranged within the passage. The circuitry generates information indicative of a longitudinal position of the target relative to the cap, and thus of the reservoir volume.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: December 27, 2011
    Assignee: Medtronic, Inc.
    Inventor: Keith A. Miesel
  • Publication number: 20110313261
    Abstract: A wearable ambulatory data recorder that senses physiological parameters of a patient, and stores physiological parameter data for later retrieval, as well as techniques for using such a wearable ambulatory data recorder, are described. The data recorder includes one or more sensors located on or within a housing. The data recorder may include an adhesive layer for attachment to a patient. In some embodiments, the housing may be within a patch, e.g., bandage, which includes the adhesive layer. The housing may be waterproof. Features of the data recorder such as size, waterproofness, and inclusion of an adhesive may allow the data recorder to be unobtrusively worn by a patient during a variety of daily activities. The data recorder may be for single use and thereafter disposable.
    Type: Application
    Filed: August 24, 2011
    Publication date: December 22, 2011
    Inventors: Duane Bourget, Keith A. Miesel, Gregory F. Molnar
  • Publication number: 20110296925
    Abstract: The disclosure is directed to a capacitive pressure sensor, and the assembly of a capacitive pressure sensor, that may be used within an implantable medical pump. In one example, a housing ferrule that encloses one capacitive plate and includes at least one protrusion for attaching a support structure of the capacitive plate. The at least one protrusion defines a smaller inner diameter as a reference point for securing the support structure while the ferrule provides a larger inner diameter to allow the support structure to tilt inside the ferrule to orient the capacitive plate into a desired plane. Despite manufacturing irregularities, the capacitive plate can be mounted in the desired plane parallel to another capacitive plate, a diaphragm, mounted to an edge of the ferrule. In another example, an assembly tool provides a stage to orient the capacitive plate and support structure within the ferrule at a desired depth.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 8, 2011
    Applicant: Medtronic, Inc.
    Inventors: Keith A. Miesel, James M. Haase, Chris J. Paidosh, Darren A. Janzig, Timothy J. Denison
  • Publication number: 20110301575
    Abstract: The disclosure is directed to a pressure sensor of an implantable medical device. The pressure sensor may utilize detect fluid pressure based on a changing capacitance between two capacitive elements. The pressure sensor may define at least a portion of a fluid enclosure of the IMD. In one example, the pressure sensor has a self-aligning housing shape that occludes an opening in the pump bulkhead of the IMD. An operative surface of the pressure and the portion of the fluid enclosure may be formed of a corrosion resistant and/or biocompatible material. A first capacitive element of the pressure sensor may be a metal alloy diaphragm that deflects in response to external fluid pressure. A second capacitive element of the pressure sensor may be a metal coating on a rigid insulator sealed from the fluid by the diaphragm and a housing of the sensor.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 8, 2011
    Applicant: Medtronic, Inc.
    Inventors: Keith A. Miesel, James M. Haase, Chris J. Paidosh, Darren A. Janzig, Timothy J. Denison
  • Patent number: 8068910
    Abstract: The disclosure describes a therapeutic sphincter control system with a fluid tube pressure sensor. The system senses sphincter pressure and sends the information to a stimulator that is capable of stimulation therapy to control sphincter contractility, thus reducing unwanted urinary incontinence. Measuring sphincter pressure is accomplished through the use of a fluid-filled tube placed through the sphincter and attached to a module implanted within the bladder. Pressure within the tube is transduced to generate an electrical signal that is sent wirelessly to an implanted stimulator connected to a lead positioned near pelvic floor nerves. An external device may be used to wirelessly send information to the implanted stimulator and inhibit stimulation in order for the patient to empty the bladder. Pressure information and stimulation information may be recorded and reviewed for continued patient monitoring. In addition, the system may only include the pressure sensor to monitor patient pressure information.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: November 29, 2011
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, Keith A. Miesel
  • Patent number: 8055348
    Abstract: A system includes one or more sensors and a processor. Each of the sensors generates a signal as a function of at least one physiological parameter of a patient that may discernibly change when the patient is asleep. The processor monitors the physiological parameters, and determines whether the patient is asleep based on the parameters. In some embodiments, the processor determines plurality of sleep metric values, each of which indicates a probability of the patient being asleep, based on each of a plurality of physiological parameters. The processor may average or otherwise combine the plurality of sleep metric values to provide an overall sleep metric value that is compared to a threshold value in order to determine whether the patient is asleep. In addition, an electroencephalogram signal may be used to identify sleep states of the patient.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: November 8, 2011
    Assignee: Medtronic, Inc.
    Inventors: Kenneth T. Heruth, Keith A. Miesel, Jonathan C. Werder, Steve R. LaPorte, Nina M. Graves
  • Publication number: 20110264006
    Abstract: A medical device system comprises a reservoir configured to store a therapeutic fluid and a medical pump configured to deliver the therapeutic fluid from the reservoir to a patient. The system also comprises a sensor that can detect a characteristic associated with the pump and a processor to determine if the characteristic detected indicates the reservoir is empty or near empty. The characteristic may comprise a property associated with the energization of an actuation mechanism configured to be energized to provide a pump stroke. The characteristic may also comprise a characteristic of a noise made by an actuator within the pump at the end of a pump stroke.
    Type: Application
    Filed: April 27, 2010
    Publication date: October 27, 2011
    Applicant: Medtronic, Inc.
    Inventors: Irfan Z. Ali, Keith A. Miesel, Scott L. Kalpin, Scott A. Sarkinen
  • Publication number: 20110257593
    Abstract: A method for determining status of an implanted catheter includes acquiring raw pressure data from a pressure sensor of in an implantable infusion device. The pressure sensor is in communication with a lumen of the catheter operably coupled to the infusion device. The catheter has a delivery region, in communication with the lumen, intended to be positioned in a fluid-filled target location of a patient. The method further includes filtering the raw pressure data to remove the DC component, leaving the AC component within a relevant physiological frequency range; rectifying the AC component to produce a rectified pressure signal; calculating a mean magnitude of the rectified signal; and determining whether the mean magnitude is below a predetermined threshold. If the mean magnitude is below the threshold, the catheter is determined to be in a state other than a normal state.
    Type: Application
    Filed: June 27, 2011
    Publication date: October 20, 2011
    Applicant: MEDTRONIC, INC.
    Inventors: Scott L. Kalpin, Lucien Bell Solefack, Keith A. Miesel
  • Publication number: 20110257591
    Abstract: Unexpected changes in the volume of therapeutic fluid in the reservoir of a fluid delivery device are detected based on changes in the pressure of the reservoir measured over a period of time by a pressure sensor. Additionally, an ambulatory reservoir fluid volume gauge is provided to indicate an actual volume of therapeutic fluid in a fluid delivery device reservoir. The actual volume of therapeutic fluid in the reservoir indicated by the ambulatory reservoir fluid volume gauge is determined based on changes in the pressure in the reservoir measured over a period of time by a pressure sensor.
    Type: Application
    Filed: April 16, 2010
    Publication date: October 20, 2011
    Applicant: Medtronic, Inc.
    Inventors: Cynthia R. Nelson Konen, Irfan Z. Ali, Keith A. Miesel, Scott L. Kalpin
  • Patent number: 8032224
    Abstract: Techniques for controlling delivery of a therapy to a patient by a medical device, such as an implantable medical device (IMD), involve a sensitivity analysis of a performance metric. The performance metric may relate to efficacy or side effects of the therapy. For example, the performance metric may comprise a sleep quality metric, an activity level metric, a movement disorder metric for patients with Parkinson's disease, epilepsy, or the like. The sensitivity analysis identifies values of therapy parameters that defines a substantially maximum or minimum value of the performance metric. The identified therapy parameters are a baseline therapy parameter set, and a medical device may control delivery of the therapy based on the baseline therapy parameter set.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: October 4, 2011
    Assignee: Medtronic, Inc.
    Inventors: Keith A. Miesel, Kenneth T. Heruth, Jonathan C. Werder, Steve R. LaPorte, Nina M. Graves
  • Publication number: 20110238136
    Abstract: Techniques for detecting a value of a sensed patient parameter, and automatically delivering therapy to a patient according to therapy information previously associated with the detected value, are described. In exemplary embodiments, a medical device receives a therapy adjustment from the patient. In response to the adjustment, the medical device associates a sensed value of a patient parameter with therapy information determined based on the adjustment. Whenever the parameter value is subsequently detected, the medical device delivers therapy according to the associated therapy information. In this manner, the medical device may “learn” to automatically adjust therapy in the manner desired by the patient as the sensed parameter of the patient changes. Exemplary patient parameters that may be sensed for performance of the described techniques include posture, activity, heart rate, electromyography (EMG), an electroencephalogram (EEG), an electrocardiogram (ECG), temperature, respiration rate, and pH.
    Type: Application
    Filed: June 6, 2011
    Publication date: September 29, 2011
    Applicant: Medtronic, Inc.
    Inventors: Duane Bourget, Keith A. Miesel