Patents by Inventor Keith Morton

Keith Morton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11958048
    Abstract: A plasmon resonance system, instrument, cartridge, and methods for analysis of analytes is disclosed. A PR system is provided that may include a DMF-LSPR cartridge that may support both digital microfluidic (DMF) capability and localized surface plasmon resonance (LSPR) capability for analysis of analytes. In some examples, the DMF portion of the DMF-LSPR cartridge may include an electrode arrangement for performing droplet operations, whereas the LSPR portion of the DMF-LSPR cartridge may include an LSPR sensor. In other examples, the LSPR portion of the DMF-LSPR cartridge may include an in-line reference channel, wherein the in-line reference channel may be a fluid channel including at least one functionalized LSPR sensor (or sample spot) and at least one non-functionalized LSPR sensor (or reference spot). Additionally, methods of using the PR system for analysis of analytes are provided.
    Type: Grant
    Filed: February 27, 2022
    Date of Patent: April 16, 2024
    Assignee: National Research Council of Canada
    Inventors: Ryan Denomme, Lidija Malic, Daniel Brassard, Keith Morton, Teodor Veres
  • Patent number: 11913642
    Abstract: The modular tubular exhaust system includes a first tubular body, a second tubular body and at least one third tubular body connecting to form, a fully assembled configuration, a vertically arranged exhaust pipe. The first, the second, and the third tubular bodies each have a tubular body first end and a tubular body second end where the first ends and second ends are configured to mate with each other to form the vertically arranged exhaust pipe. The system further includes tabs that extend radially outward on opposing sides of the tubular bodies to allow a plurality of fasteners to attach tubular bodies together when arranged in the vertical configuration. The assembled configuration may vary within the spirit and scope of the disclosure, for example, in some embodiments, the system may only have a first and a second tubular section or a first, second, and a plurality of third tubular sections.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: February 27, 2024
    Inventors: Benjamin Morton, Dave Peterson, Keith Gerks
  • Patent number: 11867320
    Abstract: In a polymeric microfluidic valve, an adhesion control surface with discrete micro- or nano-scale structured surfaces are separated by fluid filled voids at an interface between an elastomeric membrane seals against a substrate layer. The structured surfaces reduce adhesion between the membrane layer and the substrate layer and prevent permanent bonding, while at the same time providing a good balance of adhesion at the valve seat to provide a sealing engagement. Microstructured adhesion control surfaces on and around valve bodies permit opening the valve, by reducing contact surface area.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: January 9, 2024
    Assignee: National Research Council of Canada
    Inventors: Kebin Li, Keith Morton, Teodor Veres
  • Patent number: 11753485
    Abstract: The present application relates to polymer microparticle-metal nanoparticle composites, to methods of preparing polymer microparticle-metal nanoparticle composites and to uses of such composites. The methods comprise introducing into a microfluidic device, a composition comprising: a cationic metal nanoparticle precursor; a polymer microparticle precursor that comprises a plurality of photopolymerizable groups; and a photoreducer-photoinitiator; then irradiating the composition under conditions to simultaneously reduce the cationic metal and polymerize the photopolymerizable groups to obtain the composite.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: September 12, 2023
    Assignee: National Research Council of Canada
    Inventors: Lidija Malic, Xuefeng Zhang, Keith Morton, Teodor Veres
  • Patent number: 11661469
    Abstract: Disclosed is a method of preparing polymer film-metal composites and uses of such composites. The metal can be in the form of a nanoparticle or a film. The methods comprise depositing on a surface, a composition comprising: a cationic metal precursor; a polymer film precursor that comprises a plurality of photopolymerizable groups; and a photoreducer-photoinitiator; then irradiating the composition under conditions to simultaneously reduce the cationic metal and polymerize the photopolymerizable groups to obtain the composite on the surface.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: May 30, 2023
    Assignee: National Research Council of Canada
    Inventors: Lidija Malic, Xuefeng Zhang, Keith Morton, Teodor Veres
  • Publication number: 20220274112
    Abstract: A technique for supplying droplet content of an oil-encapsulated (OE) digital microfluidic (D?F) network to a region that is sensitive to oil contact involves sealing off a boundary surrounding the sensitive region with a volume of liquid that is miscible with payload of the OE-droplets. The sensitive region may be an opening to a microfluidic channel, or a sensor surface. The sealing off may be provided by transporting an unencapsulated droplet over the OE-D?F chip, either from a reservoir prior to oil encapsulation of the reservoir, or from a non-oil encapsulated reservoir; or by injecting the liquid into the microfluidic channel. A suitable treatment of the boundary may anchor the liquid to the boundary, and prevent removal by ordinary OE-D?F operations. A remainder of the surfaces of unit cells the D?F chip may provide higher droplet contact angle.
    Type: Application
    Filed: July 9, 2020
    Publication date: September 1, 2022
    Applicant: National Research Council of Canada
    Inventors: Daniel Brassard, Lidija MALIC, Keith MORTON, Teodor VERES
  • Publication number: 20220221402
    Abstract: A plasmon resonance system, instrument, cartridge, and methods for analysis of analytes is disclosed. A PR system is provided that may include a DMF-LSPR cartridge that may support both digital microfluidic (DMF) capability and localized surface plasmon resonance (LSPR) capability for analysis of analytes. In some examples, the DMF portion of the DMF-LSPR cartridge may include an electrode arrangement for performing droplet operations, whereas the LSPR portion of the DMF-LSPR cartridge may include an LSPR sensor. In other examples, the LSPR portion of the DMF-LSPR cartridge may include an in-line reference channel, wherein the in-line reference channel may be a fluid channel including at least one functionalized LSPR sensor (or sample spot) and at least one non-functionalized LSPR sensor (or reference spot). Additionally, methods of using the PR system for analysis of analytes are provided.
    Type: Application
    Filed: February 27, 2022
    Publication date: July 14, 2022
    Inventors: Ryan Denomme, Lidija Malic, Daniel Brassard, Keith Morton, Teodor Veres
  • Patent number: 11278890
    Abstract: A plasmon resonance system, instrument, cartridge, and methods for analysis of analytes is disclosed. A PR system is provided that may include a DMF-LSPR cartridge that may support both digital microfluidic (DMF) capability and localized surface plasmon resonance (LSPR) capability for analysis of analytes. In some examples, the DMF portion of the DMF-LSPR cartridge may include an electrode arrangement for performing droplet operations, whereas the LSPR portion of the DMF-LSPR cartridge may include an LSPR sensor. In other examples, the LSPR portion of the DMF-LSPR cartridge may include an in-line reference channel, wherein the in-line reference channel may be a fluid channel including at least one functionalized LSPR sensor (or sample spot) and at least one non-functionalized LSPR sensor (or reference spot). Additionally, methods of using the PR system for analysis of analytes are provided.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: March 22, 2022
    Assignee: National Research Council of Canada
    Inventors: Ryan Denomme, Lidija Malic, Daniel Brassard, Keith Morton, Teodor Veres
  • Publication number: 20220008924
    Abstract: A centrifugal microfluidic platform is combined with a stationary liquid pumping system which pumps liquids into microfluidic chips by dripping through a stationary dispensing nozzle without any physical contact or coupling between the nozzles and the microfluidic chips.
    Type: Application
    Filed: November 12, 2019
    Publication date: January 13, 2022
    Applicant: National Research Council of Canada
    Inventors: Liviu CLIME, Keith MORTON, Daniel BRASSARD, Mathias GEISSLER, Jamal DAOUD, Harold HEBERT, Teodor VERES
  • Patent number: 11149242
    Abstract: Systems, methods, and apparatuses of controlling fluid flow are disclosed. An apparatus includes a first microplate having a first open portion and defining one or more first wells therein, a second microplate having a second open portion and defining one or more second wells therein, and a pneumatic lid constructed of styrene ethylene butylene styrene (SEBS). The pneumatic lid extends over the first open portion and the second open portion and includes one or more microfluidic channels that fluidly couple the one or more first wells to the one or more second wells. The pneumatic lid provides an airtight seal over the first microplate and the second microplate.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: October 19, 2021
    Assignees: Essen Instruments, Inc., National Research Council of Canada
    Inventors: Kirk S. Schroeder, Bradley D. Neagle, Eric Endsley, Daniel Appledorn, Keith Morton
  • Publication number: 20210299660
    Abstract: A plasmon resonance system, instrument, cartridge, and methods for analysis of analytes is disclosed. A PR system is provided that may include a DMF-LSPR cartridge that may support both digital microfluidic (DMF) capability and localized surface plasmon resonance (LSPR) capability for analysis of analytes. In some examples, the DMF portion of the DMF-LSPR cartridge may include an electrode arrangement for performing droplet operations, whereas the LSPR portion of the DMF-LSPR cartridge may include an LSPR sensor. In other examples, the LSPR portion of the DMF-LSPR cartridge may include an in-line reference channel, wherein the in-line reference channel may be a fluid channel including at least one functionalized LSPR sensor (or sample spot) and at least one non-functionalized LSPR sensor (or reference spot). Additionally, methods of using the PR system for analysis of analytes are provided.
    Type: Application
    Filed: August 6, 2019
    Publication date: September 30, 2021
    Inventors: Ryan Denomme, Lidija Malic, Daniel Brassard, Keith Morton, Teodor Veres
  • Patent number: 11071985
    Abstract: A centrifugal microfluidic chip mounting, kit and method include a swivel joint permitting a chip to rotate about an axis of the chip in a plane swept by a centrifuge, and a force applicator for controlling an angle of the swivel and for applying a force in proportion to a rotational rate of the centrifuge. The mounting includes: a blade part (18) that couples to, or defines, a blade (10) of a centrifuge at a radial distance from a centrifuge axis (12); a chip part (20) that holds the chip at an orientation having a normal not perpendicular to the axis; a one degree of freedom (DoF) joint (16) between the blade part and the chip part; and a force applicator (28) which bears on the chip part at a fixed set of one or more points, which do not surround, and are not surrounded by, the joint.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: July 27, 2021
    Assignee: National Research Council of Canada
    Inventors: Liviu Clime, Teodor Veres, Keith Morton
  • Publication number: 20200408332
    Abstract: In a polymeric microfluidic valve, an adhesion control surface with discrete micro- or nano-scale structured surfaces are separated by fluid filled voids at an interface between an elastomeric membrane seals against a substrate layer. The structured surfaces reduce adhesion between the membrane layer and the substrate layer and prevent permanent bonding, while at the same time providing a good balance of adhesion at the valve seat to provide a sealing engagement. Microstructured adhesion control surfaces on and around valve bodies permit opening the valve, by reducing contact surface area.
    Type: Application
    Filed: March 4, 2019
    Publication date: December 31, 2020
    Applicant: National Research Council of Canada
    Inventors: Kebin LI, Keith MORTON, Teodor VERES
  • Publication number: 20200223999
    Abstract: The present application relates to polymer film-metal composites, to methods of preparing polymer film-metal composites and to uses of such composites. The metal can be in the form of a nanoparticle or a film. The methods comprise depositing on a surface, a composition comprising: a cationic metal precursor; a polymer film precursor that comprises a plurality of photopolymerizable groups; and a photoreducer-photoinitiator; then irradiating the composition under conditions to simultaneously reduce the cationic metal and polymerize the photopolymerizable groups to obtain the composite on the surface.
    Type: Application
    Filed: September 25, 2018
    Publication date: July 16, 2020
    Inventors: Lidija Malic, Xuefeng Zhang, Keith Morton, Teodor Veres
  • Publication number: 20200223948
    Abstract: The present application relates to polymer microparticle-metal nanoparticle composites, to methods of preparing polymer microparticle-metal nanoparticle composites and to uses of such composites. The methods comprise introducing into a microfluidic device, a composition comprising: a cationic metal nanoparticle precursor; a polymer microparticle precursor that comprises a plurality of photopolymerizable groups; and a photoreducer-photoinitiator; then irradiating the composition under conditions to simultaneously reduce the cationic metal and polymerize the photopolymerizable groups to obtain the composite.
    Type: Application
    Filed: September 25, 2018
    Publication date: July 16, 2020
    Inventors: Lidija Malic, Xuefeng Zhang, Keith Morton, Teodor Veres
  • Publication number: 20200224139
    Abstract: Systems, methods, and apparatuses of controlling fluid flow are disclosed. An apparatus includes a first microplate having a first open portion and defining one or more first wells therein, a second microplate having a second open portion and defining one or more second wells therein, and a pneumatic lid constructed of styrene ethylene butylene styrene (SEBS). The pneumatic lid extends over the first open portion and the second open portion and includes one or more microfluidic channels that fluidly couple the one or more first wells to the one or more second wells. The pneumatic lid provides an airtight seal over the first microplate and the second microplate.
    Type: Application
    Filed: March 23, 2020
    Publication date: July 16, 2020
    Inventors: Kirk S. SCHROEDER, Bradley D. NEAGLE, Eric ENDSLEY, Daniel APPLEDORN, Keith MORTON
  • Patent number: 10633624
    Abstract: Systems, methods, and apparatuses of controlling fluid flow are disclosed. An apparatus includes a first microplate having a first open portion and defining one or more first wells therein, a second microplate having a second open portion and defining one or more second wells therein, and a pneumatic lid constructed of styrene ethylene butylene styrene (SEBS). The pneumatic lid extends over the first open portion and the second open portion and includes one or more microfluidic channels that fluidly couple the one or more first wells to the one or more second wells. The pneumatic lid provides an airtight seal over the first microplate and the second microplate.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: April 28, 2020
    Assignees: ESSEN INSTRUMENTS, INC., NATIONAL RESEARCH COUNCIL OF CANADA
    Inventors: Kirk S. Schroeder, Bradley D. Neagle, Eric Endsley, Daniel Appledorn, Keith Morton
  • Publication number: 20190322972
    Abstract: Systems, methods, and apparatuses of controlling fluid flow are disclosed. An apparatus includes a first microplate having a first open portion and defining one or more first wells therein, a second microplate having a second open portion and defining one or more second wells therein, and a pneumatic lid constructed of styrene ethylene butylene styrene (SEBS). The pneumatic lid extends over the first open portion and the second open portion and includes one or more microfluidic channels that fluidly couple the one or more first wells to the one or more second wells. The pneumatic lid provides an airtight seal over the first microplate and the second microplate.
    Type: Application
    Filed: July 1, 2019
    Publication date: October 24, 2019
    Inventors: Kirk S. SCHROEDER, Bradley D. NEAGLE, Eric ENDSLEY, Daniel APPLEDORN, Keith MORTON
  • Patent number: 10117364
    Abstract: Display devices, methods for fabricating display devices, and display systems are provided. For example, a display device comprises a display panel, a display cover bonded to a perimeter of the display panel with a perimeter seal, and an optically clear fluid disposed in a gap between the display panel and the display cover. The optically clear fluid has an index of refraction that is substantially matched to an index of refraction of the display cover. The optically clear fluid may comprise oil, alcohol, water, or a liquid gel, for example.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: October 30, 2018
    Assignee: DISPLAY LOGIC USA INC.
    Inventor: Keith Morton
  • Publication number: 20180147879
    Abstract: A security device comprising a microstructure and one or more curable fluids, in which the microstructure is configured to direct the one or more curable fluids from a local application zone of the microstructure to one or more regions of the microstructure prior to curing each curable fluid. Alternatively, the security device may comprise a microstructure; and one or more cured fluids; in which each cured fluid is derived from a corresponding curable fluid that is directed by the microstructure from a local application zone of the microstructure to one or more regions of the microstructure prior to curing each curable fluid. The microstructure can have a depth of at least 100 nm, and a spacing aspect ratio (depth to height) greater than 1:10. A process for fabricating a security device is also described.
    Type: Application
    Filed: May 11, 2016
    Publication date: May 31, 2018
    Applicant: NATIONAL RESEARCH COUNCIL OF CANADA
    Inventors: Keith MORTON, Teodor VERES, Liviu CLIME