Patents by Inventor Keith Nogueira

Keith Nogueira has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12369823
    Abstract: A method for optional external calibration of a calibration-free glucose sensor uses values of measured working electrode current (Isig) and EIS data to calculate a final sensor glucose (SG) value. Counter electrode voltage (Vcntr) may also be used as an input. Raw Isig and Vcntr values may be preprocessed, and low-pass filtering, averaging, and/or feature generation may be applied. SG values may be generated using one or more models for predicting SG calculations. When an external blood glucose (BG) value is available, the BG value may also be used in calculating the SG values. A SG variance estimate may be calculated for each predicted SG value and modulated, with the modulated SG values then fused to generate a fused SG. A Kalman filter, as well as error detection logic, may be applied to the fused SG value to obtain a final SG, which is then displayed to the user.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: July 29, 2025
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Jeffrey Nishida, Andrea Varsavsky, Taly G. Engel, Keith Nogueira, Andy Y. Tsai, Peter Ajemba
  • Patent number: 12343144
    Abstract: A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects.
    Type: Grant
    Filed: April 12, 2024
    Date of Patent: July 1, 2025
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Peter Ajemba, Keith Nogueira, Brian T. Kannard
  • Publication number: 20240423514
    Abstract: A continuous glucose monitoring system may utilize electrode current (Isig) signals, Electrochemical Impedance Spectroscopy (EIS), and Vcntr values to optimize sensor glucose (SG) calculation in such a way as to enable reduction of the need for blood glucose (BG) calibration requests from users.
    Type: Application
    Filed: September 6, 2024
    Publication date: December 26, 2024
    Inventors: Georgios MALLAS, Andrea VARSAVSKY, Peter AJEMBA, Jeffrey NISHIDA, Keith NOGUEIRA, Elaine GEE, Leonardo NAVA-GUERRA, Jing LIU, Sadaf S. SELEH, Taly G. ENGEL, Benyamin GROSMAN, Steven LAI, Luis A. TORRES, Chi A. TRAN, David M. SNIECINSKI
  • Publication number: 20240412877
    Abstract: A method of estimating a value of a physiological condition may be performed by an electronic device including one or more processors. The method involves generating a simulated measurement using an actual measurement from a first sensor as input to a translation model. The actual measurement includes one or more measurement parameters output by the first sensor as an indication of the value of the physiological condition. The simulated measurement includes one or more measurement parameters that a second sensor would output given the same value of the physiological condition. The method further involves estimating the value of the physiological condition through inputting the simulated measurement to an estimation model. The estimation model is configured to map the one or more measurement parameters that the second sensor would output to an estimated value for the physiological condition.
    Type: Application
    Filed: August 21, 2024
    Publication date: December 12, 2024
    Inventors: Elaine GEE, Peter AJEMBA, Bahman ENGHETA, Jeffrey NISHIDA, Andrea VARSAVSKY, Keith NOGUEIRA
  • Patent number: 12161464
    Abstract: Methods, systems, and devices for improving continuous glucose monitoring (“CGM”) are described herein. More particularly, the methods, systems, and devices describe applying micro machine learning models to generate predicted sensor glucose values. The system may use the predicted sensor glucose values to display a sensor glucose value to a user. The layered models may generate more reliable sensor glucose predictions across many scenarios, leading to a reduction of sensor glucose signal blanking. The methods, systems, and devices described herein further comprise applying a plurality of micro model to estimate sensor glucose values under outlier conditions. The system may prioritize the models that are trained for certain outlier conditions when the system detects those outlier condition based on the sensor data.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: December 10, 2024
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Peter Ajemba, Keith Nogueira
  • Publication number: 20240398295
    Abstract: A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects.
    Type: Application
    Filed: July 31, 2024
    Publication date: December 5, 2024
    Inventors: Peter AJEMBA, Keith NOGUEIRA, Jeffrey NISHIDA, Andy Y. TSAI
  • Patent number: 12138047
    Abstract: Methods, systems, and devices for improving continuous glucose monitoring (“CGM”) are described herein. More particularly, the methods, systems, and devices describe applying layered machine learning models to generate predicted sensor glucose values. The system may use the predicted sensor glucose values to display a sensor glucose value to a user. The layered models may generate more reliable sensor glucose predictions across many scenarios, leading to a reduction of sensor glucose signal blanking. The methods, systems, and devices described herein further comprise applying a plurality of micro model to estimate sensor glucose values under outlier conditions. The system may prioritize the models that are trained for certain outlier conditions when the system detects those outlier condition based on the sensor data.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: November 12, 2024
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Peter Ajemba, Keith Nogueira
  • Publication number: 20240345011
    Abstract: A method of optimizing operation of a glucose sensor includes performing an electrochemical impedance spectroscopy (EIS) procedure to obtain imaginary impedance values for an electrode of a glucose sensor, calculating a change value as a difference between a threshold reference for the imaginary impedance values and a most-recent imaginary impedance value, and obtaining measurements of the calibration factor for the glucose sensor. The method also includes comparing the change value to a first threshold and the calibration factor to a second threshold and determining, based on the comparison, whether sensor data from the glucose sensor is valid.
    Type: Application
    Filed: June 6, 2024
    Publication date: October 17, 2024
    Inventors: Keith Nogueira, Taly G. Engel, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Jaeho Kim, Mike C. Liu, Andy Y. Tsai, Andrea Varsavsky, Fei Yu
  • Patent number: 12114972
    Abstract: A continuous glucose monitoring system may utilize electrode current (Isig) signals, Electrochemical Impedance Spectroscopy (EIS), and Vcntr values to optimize sensor glucose (SG) calculation in such a way as to enable reduction of the need for blood glucose (BG) calibration requests from users.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: October 15, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Georgios Mallas, Andrea Varsavsky, Peter Ajemba, Jeffrey Nishida, Keith Nogueira, Elaine Gee, Leonardo Nava-Guerra, Jing Liu, Sadaf S. Seleh, Taly G. Engel, Benyamin Grosman, Steven Lai, Luis A. Torres, Chi A. Tran, David M. Sniecinski
  • Patent number: 12119119
    Abstract: Medical devices and related systems and methods are provided. A method of estimating a physiological condition using a first sensing arrangement involves obtaining a sensor translation model associated with a relationship between the first sensing arrangement and a second sensing arrangement, wherein the second sensing arrangement is different from the first sensing arrangement, obtaining one or more measurements from a sensing element coupled to the processing system of the first sensing arrangement, determining simulated measurement data for the second sensing arrangement by applying the sensor translation model to the one or more measurements from the sensing element of the first sensing arrangement, and determining an estimated value for the physiological condition by applying an estimation model associated with the second sensing arrangement to the simulated measurement data.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: October 15, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Elaine Gee, Peter Ajemba, Bahman Engheta, Jeffrey Nishida, Andrea Varsavsky, Keith Nogueira
  • Patent number: 12082930
    Abstract: A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects.
    Type: Grant
    Filed: September 7, 2022
    Date of Patent: September 10, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Peter Ajemba, Keith Nogueira, Jeffrey Nishida, Andy Y. Tsai
  • Publication number: 20240285199
    Abstract: A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects.
    Type: Application
    Filed: April 23, 2024
    Publication date: August 29, 2024
    Inventors: Keith Nogueira, Peter Ajemba, Michael E. Miller, Steven C. Jacks, Jeffrey Nishida, Andy Y. Tsai, Andrea Varsavsky
  • Publication number: 20240260867
    Abstract: A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects.
    Type: Application
    Filed: April 12, 2024
    Publication date: August 8, 2024
    Inventors: Peter Ajemba, Keith Nogueira, Brian T. Kannard
  • Patent number: 12019039
    Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: June 25, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Keith Nogueira, Taly G. Engel, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Jaeho Kim, Mike C. Liu, Andy Y. Tsai, Andrea Varsavsky, Fei Yu
  • Patent number: 11974844
    Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: May 7, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Keith Nogueira, Taly G. Engel, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Jaeho Kim, Mike C. Liu, Andy Y. Tsai
  • Patent number: 11963768
    Abstract: A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: April 23, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Keith Nogueira, Peter Ajemba, Michael E. Miller, Steven C. Jacks, Jeffrey Nishida, Andy Y. Tsai, Andrea Varsavsky
  • Patent number: 11957464
    Abstract: A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects.
    Type: Grant
    Filed: January 13, 2022
    Date of Patent: April 16, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Peter Ajemba, Keith Nogueira, Brian T. Kannard
  • Patent number: 11857765
    Abstract: A processor-implemented method comprises obtaining current operational context information associated with a sensing device; obtaining an expected calibration factor parameter model associated with a patient; calculating an expected calibration factor value based on the expected calibration factor parameter model and the current operational context information; obtaining one or more electrical signals from the sensing device, the one or more electrical signals having a signal characteristic indicative of a physiological condition; converting the one or more electrical signals into a calibrated measurement value for the physiological condition using the expected calibration factor value; and outputting the calibrated measurement value for the physiological condition.
    Type: Grant
    Filed: October 7, 2022
    Date of Patent: January 2, 2024
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Andrea Varsavsky, Yunfeng Lu, Keith Nogueira, Jeffrey Nishida
  • Publication number: 20230360799
    Abstract: A method for retrospective calibration of a glucose sensor uses stored values of measured working electrode current (Isig) to calculate a final sensor glucose (SG) value retrospectively. The Isig values may be preprocessed, discrete wavelet decomposition applied. At least one machine learning model, such as, e.g., Genetic Programing (GP) and Regression Decision Tree (DT), may be used to calculate SG values based on the Isig values and the discrete wavelet decomposition. Other inputs may include, e.g., counter electrode voltage (Vcntr) and Electrochemical Impedance Spectroscopy (EIS) data. A plurality of machine learning models may be used to generate respective SG values, which are then fused to generate a fused SG. Fused SG values may be filtered to smooth the data, and blanked if necessary.
    Type: Application
    Filed: May 26, 2023
    Publication date: November 9, 2023
    Inventors: Keith Nogueira, Taly G. Engel, Benyamin Grosman, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Mike C. Liu, Andy Y. Tsai, Andrea Varsavsky, Jeffrey Nishida
  • Patent number: 11670425
    Abstract: Medical devices and related systems and methods are provided. A method of estimating a physiological condition involves determining a translation model based at least in part on relationships between first measurement data corresponding to instances of a first sensing arrangement and second measurement data corresponding to instances of a second sensing arrangement, obtaining third measurement data associated with the second sensing arrangement, determining simulated measurement data for the first sensing arrangement by applying the translation model to the third measurement data, and determining an estimation model for a physiological condition using the simulated measurement data, wherein the estimation model is applied to subsequent measurement output provided by an instance of the first sensing arrangement to obtain an estimated value for the physiological condition.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: June 6, 2023
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Elaine Gee, Peter Ajemba, Bahman Engheta, Jeffrey Nishida, Andrea Varsavsky, Keith Nogueira