Patents by Inventor Keith Nowicki

Keith Nowicki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12078584
    Abstract: A velocimeter/nephelometer for measuring the three-dimensional velocity and/or size and/or shape of a particle. A set of laser interferometers and a set of photodiode detectors are arranged on a two-dimensional platform. Each laser interferometer produces a laser beam, with the beams intersecting within an inner area of the platform. Two of the laser interferometers produce like-oriented fringe patterns with an angular separation between the propagation direction of their beams of ninety degrees. A third of the laser interferometers produces a beam with the fringe pattern oriented orthogonal to the fringe patterns of the other two laser interferometers. Each detector is positioned and filtered to detect light from an associated laser interferometer, the light having been scattered by a particle as the particle passes through a volume of observation.
    Type: Grant
    Filed: December 10, 2021
    Date of Patent: September 3, 2024
    Assignee: Southwest Research Institute
    Inventors: Keith Nowicki, Alex Parker, Alejandro Soto
  • Publication number: 20220196537
    Abstract: A velocimeter/nephelometer for measuring the three-dimensional velocity and/or size and/or shape of a particle. A set of laser interferometers and a set of photodiode detectors are arranged on a two-dimensional platform. Each laser interferometer produces a laser beam, with the beams intersecting within an inner area of the platform. Two of the laser interferometers produce like-oriented fringe patterns with an angular separation between the propagation direction of their beams of ninety degrees. A third of the laser interferometers produces a beam with the fringe pattern oriented orthogonal to the fringe patterns of the other two laser interferometers. Each detector is positioned and filtered to detect light from an associated laser interferometer, the light having been scattered by a particle as the particle passes through a volume of observation.
    Type: Application
    Filed: December 10, 2021
    Publication date: June 23, 2022
    Inventors: Keith Nowicki, Alex Parker, Alejandro Soto
  • Patent number: 10295410
    Abstract: Disclosed systems and methods for the remote detection of atmospheric gas may include (1) receiving, at a collector, thermal infrared energy from at least one atmospheric column, (2) receiving, at optical subsystems, the thermal infrared energy over optical paths, (3) focusing the thermal infrared energy onto diffraction gratings that disperse the thermal infrared energy at a wavelength within a mid-wavelength infrared (MWIR) spectral region and a wavelength within a long-wavelength infrared (LWIR) spectral region, (4) receiving, at detectors, the thermal infrared energy dispersed from the diffraction gratings within the MWIR spectral region and the LWIR spectral region, (5) determining spectral component data associated with the thermal infrared energy in the MWIR spectral region and the LWIR spectral region, (6) sending the spectral component data to a computing device, and (7) identifying an atmospheric gas based on the spectral component data.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: May 21, 2019
    Assignee: Quantum Spatial, Inc.
    Inventors: Scott Nowicki, Keith Nowicki
  • Publication number: 20180180483
    Abstract: Disclosed systems and methods for the remote detection of atmospheric gas may include (1) receiving, at a collector, thermal infrared energy from at least one atmospheric column, (2) receiving, at optical subsystems, the thermal infrared energy over optical paths, (3) focusing the thermal infrared energy onto diffraction gratings that disperse the thermal infrared energy at a wavelength within a mid-wavelength infrared (MWIR) spectral region and a wavelength within a long-wavelength infrared (LWIR) spectral region, (4) receiving, at detectors, the thermal infrared energy dispersed from the diffraction gratings within the MWIR spectral region and the LWIR spectral region, (5) determining spectral component data associated with the thermal infrared energy in the MWIR spectral region and the LWIR spectral region, (6) sending the spectral component data to a computing device, and (7) identifying an atmospheric gas based on the spectral component data.
    Type: Application
    Filed: September 1, 2017
    Publication date: June 28, 2018
    Inventors: Scott Nowicki, Keith Nowicki