Patents by Inventor Keith P. Laby

Keith P. Laby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11039736
    Abstract: A system for controlling movement of a remotely controlled steerable instrument may comprise a flexible instrument comprising a steerable portion configured to articulate to change a shape of the steerable portion. The system may also comprise a shape sensing device comprising a first resistance-changing flexible sensor. The first resistance-changing flexible sensor may be configured to generate a signal indicative of a first bend change in the steerable portion. The system may also comprise a controller in signal communication with the first resistance-changing flexible sensor. The controller may be logically coupled to the flexible instrument and is configured to output a control signal to articulate the steerable portion of the flexible instrument in response to receiving at least the signal from the first resistance-changing flexible sensor.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: June 22, 2021
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Keith P. Laby, Amir Belson, Robert M. Ohline, Christoph M. Pistor, Charles E. Swinehart, Bruce R. Woodley
  • Publication number: 20200229683
    Abstract: A system for controlling movement of a remotely controlled steerable instrument may comprise a flexible instrument comprising a steerable portion configured to articulate to change a shape of the steerable portion. The system may also comprise a shape sensing device comprising a first resistance-changing flexible sensor. The first resistance-changing flexible sensor may be configured to generate a signal indicative of a first bend change in the steerable portion. The system may also comprise a controller in signal communication with the first resistance-changing flexible sensor. The controller may be logically coupled to the flexible instrument and is configured to output a control signal to articulate the steerable portion of the flexible instrument in response to receiving at least the signal from the first resistance-changing flexible sensor.
    Type: Application
    Filed: April 6, 2020
    Publication date: July 23, 2020
    Inventors: Keith P. Laby, Amir Belson, Robert M. Ohline, Christoph M. Pistor, Charles E. Swinehart, Bruce R. Woodley
  • Patent number: 10660509
    Abstract: A system for controlling movement of a remotely controlled steerable instrument comprises a flexible instrument. The flexible instrument comprises a steerable distal portion and a passive proximal portion. The steerable distal portion is configured to articulate to change a shape of the steerable distal portion. The system further comprises a shape sensing device comprising an optical fiber that spirals around the steerable distal portion. The optical fiber is configured to provide a signal indicative of the shape of the steerable distal portion. The system further comprises a controller in signal communication with the optical fiber. The controller is logically coupled to the flexible instrument and is configured to output a control signal to articulate the steerable distal portion of the flexible instrument in response to receiving at least the signal from the optical fiber.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: May 26, 2020
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Keith P. Laby, Robert M. Ohline, Christoph M. Pistor, Charles E. Swinehart, Bruce R. Woodley, Amir Belson
  • Patent number: 10241507
    Abstract: A robotic system that includes a mobile robot and a remote input device. The input device may be a joystick that is used to move a camera and a mobile platform of the robot. The system may operate in a mode where the mobile platform moves in a camera reference coordinate system. The camera reference coordinate system is fixed to a viewing image provided by the camera so that movement of the robot corresponds to a direction viewed on a screen. This prevents disorientation during movement of the robot if the camera is panned across a viewing area.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: March 26, 2019
    Assignee: INTOUCH TECHNOLOGIES, INC.
    Inventors: Yulun Wang, Charles S. Jordan, Keith P. Laby, Jonathan Southard, Marco Pinter, Brian Miller
  • Publication number: 20180017966
    Abstract: A robotic system that includes a mobile robot and a remote input device. The input device may be a joystick that is used to move a camera and a mobile platform of the robot. The system may operate in a mode where the mobile platform moves in a camera reference coordinate system. The camera reference coordinate system is fixed to a viewing image provided by the camera so that movement of the robot corresponds to a direction viewed on a screen. This prevents disorientation during movement of the robot if the camera is panned across a viewing area.
    Type: Application
    Filed: September 18, 2017
    Publication date: January 18, 2018
    Inventors: Yulun Wang, Charles S. Jordan, Keith P. Laby, Jonathan Southard, Marco Pinter, Brian Miller
  • Publication number: 20170319049
    Abstract: The present invention relates, generally, to controlling a steerable instrument having an elongate body. More particularly, the present invention relates to a system and method for sensing the shape of a steerable instrument and controlling the steerable instrument in response to a control signal from a user input device and a shape signal corresponding to the sensed shape of at least a portion of the steerable instrument. The present invention also relates to a system for sensing the shape of a flexible instrument with an optical shape sensor.
    Type: Application
    Filed: July 26, 2017
    Publication date: November 9, 2017
    Inventors: Keith P. Laby, Robert M. Ohline, Christoph M. Pistor, Charles E. Swinehart, Bruce R. Woodley, Amir Belson
  • Patent number: 9766624
    Abstract: A robotic system that includes a mobile robot and a remote input device. The input device may be a joystick that is used to move a camera and a mobile platform of the robot. The system may operate in a mode where the mobile platform moves in a camera reference coordinate system. The camera reference coordinate system is fixed to a viewing image provided by the camera so that movement of the robot corresponds to a direction viewed on a screen. This prevents disorientation during movement of the robot if the camera is panned across a viewing area.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: September 19, 2017
    Assignee: INTOUCH TECHNOLOGIES, INC.
    Inventors: Yulun Wang, Charles S. Jordan, Keith P. Laby, Jonathan Southard, Marco Pinter, Brian Miller
  • Patent number: 9737198
    Abstract: The present invention relates, generally, to controlling a steerable instrument having an elongate body. More particularly, the present invention relates to a system and method for sensing the shape of a steerable instrument and controlling the steerable instrument in response to a control signal from a user input device and a shape signal corresponding to the sensed shape of at least a portion of the steerable instrument. The present invention also relates to a system for sensing the shape of a flexible instrument with an optical shape sensor.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: August 22, 2017
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Keith P. Laby, Robert M. Ohline, Christoph M. Pistor, Charles E. Swinehart, Bruce R. Woodley, Amir Belson
  • Publication number: 20160161948
    Abstract: A robotic system that includes a mobile robot and a remote input device. The input device may be a joystick that is used to move a camera and a mobile platform of the robot. The system may operate in a mode where the mobile platform moves in a camera reference coordinate system. The camera reference coordinate system is fixed to a viewing image provided by the camera so that movement of the robot corresponds to a direction viewed on a screen. This prevents disorientation during movement of the robot if the camera is panned across a viewing area.
    Type: Application
    Filed: February 9, 2015
    Publication date: June 9, 2016
    Inventors: Yulun Wang, Charles S. Jordan, Keith P. Laby, Jonathan Southard, Marco Pinter, Brian Miller
  • Publication number: 20160151908
    Abstract: A steerable device may comprise an elongate, flexible body comprising a plurality of articulatable segments along at least part of a length of the body, a plurality of coil pipes extending in a spiral configuration along the articulatable segments, a plurality of tendons respectively received within the plurality of coil pipes, and an actuator coupled to the plurality of tendons, the actuator being configured to apply an actuation force to the tendons to selectively actuate articulation of the articulatable segments.
    Type: Application
    Filed: December 3, 2015
    Publication date: June 2, 2016
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Bruce Robert Woodley, Joshua Oen, Aaron W. Brown, Christopher A. Julian, Keith P. Laby, Wade A. Keller, Lawrence Kerver, Marc S. Kriedler, Scott J. Reiner, Katherine Whitin
  • Patent number: 9220398
    Abstract: The present invention relates, generally, to the reduction or elimination of permanent and catastrophic herniations in Bowden cables or coil pipes in articulating devices or snake-like robots. More particularly, the present invention relates managing the coil pipes in a spiral pattern along the articulating device or snake-like robot to reduce or eliminate the necessity of the Bowden cables or coil pipes to slide along the length of the articulating device or snake-like robot. Reduction or elimination of the necessity for the Bowden cables or coil pipes to slide reduces or eliminates catastrophic herniations in articulating devices or snake-like robots undergoing one or more articulations.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: December 29, 2015
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Bruce Robert Woodley, Joshua Oen, Aaron Brown, Chris Julian, Keith P. Laby, Wade Keller, Lawrence Kerver, Marc Kreidler, Scott Reiner, Katherine Whitin
  • Patent number: 8983174
    Abstract: A robotic system that includes a mobile robot and a remote input device. The input device may be a joystick that is used to move a camera and a mobile platform of the robot. The system may operate in a mode where the mobile platform moves in a camera reference coordinate system. The camera reference coordinate system is fixed to a viewing image provided by the camera so that movement of the robot corresponds to a direction viewed on a screen. This prevents disorientation during movement of the robot if the camera is panned across a viewing area.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: March 17, 2015
    Assignee: InTouch Technologies, Inc.
    Inventors: Yulun Wang, Charles S. Jordan, Keith P. Laby, Jonathan Southard, Marco Pinter, Brian Miller
  • Publication number: 20140330080
    Abstract: The present invention relates, generally, to controlling a steerable instrument having an elongate body. More particularly, the present invention relates to a system and method for sensing the shape of a steerable instrument and controlling the steerable instrument in response to a control signal from a user input device and a shape signal corresponding to the sensed shape of at least a portion of the steerable instrument. The present invention also relates to a system for sensing the shape of a flexible instrument with an optical shape sensor.
    Type: Application
    Filed: June 12, 2014
    Publication date: November 6, 2014
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Keith P. LABY, Robert M. OHLINE, Christoph M. PISTOR, Charles E. SWINEHART, Bruce R. WOODLEY, Amir BELSON
  • Patent number: 8784303
    Abstract: The present invention relates, generally, to controlling a steerable instrument having an elongate body. More particularly, the present invention relates to a system and method for sensing the shape of a steerable instrument and controlling the steerable instrument in response to a control signal from a user input device and a shape signal corresponding to the sensed shape of at least a portion of the steerable instrument. The present invention also relates to a system for sensing the shape of a flexible instrument with an optical shape sensor.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: July 22, 2014
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Keith P. Laby, Robert M. Ohline, Christoph M. Pistor, Charles E. Swinehart, Bruce R. Woodley, Amir Belson
  • Patent number: 8608647
    Abstract: Systems and methods for articulating an elongate articulatable body which is adapted to be delivered within a body cavity. Particularly, systems and methods for enhancing an articulating force on the elongate body without increasing an actuation force applied by an actuator.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: December 17, 2013
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Kevin Durant, Joshua Oen, David S. Mintz, Keith P. Laby
  • Publication number: 20130155221
    Abstract: A robotic system that includes a mobile robot and a remote input device. The input device may be a joystick that is used to move a camera and a mobile platform of the robot. The system may operate in a mode where the mobile platform moves in a camera reference coordinate system. The camera reference coordinate system is fixed to a viewing image provided by the camera so that movement of the robot corresponds to a direction viewed on a screen. This prevents disorientation during movement of the robot if the camera is panned across a viewing area.
    Type: Application
    Filed: February 19, 2013
    Publication date: June 20, 2013
    Applicant: INTOUCH TECHNOLOGIES, INC.
    Inventors: Yulun Wang, Charles S. Jordan, Keith P. Laby, Jonathan Southard, Marco Pinter, Brian Miller
  • Patent number: 8401275
    Abstract: A robotic system that includes a mobile robot and a remote input device. The input device may be a joystick that is used to move a camera and a mobile platform of the robot. The system may operate in a mode where the mobile platform moves in a camera reference coordinate system. The camera reference coordinate system is fixed to a viewing image provided by the camera so that movement of the robot corresponds to a direction viewed on a screen. This prevents disorientation during movement of the robot if the camera is panned across a viewing area.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: March 19, 2013
    Assignee: InTouch Technologies, Inc.
    Inventors: Yulun Wang, Charles S. Jordan, Keith P. Laby, Jonathan Southard, Marco Pinter, Brian Miller
  • Patent number: 8077963
    Abstract: A robotic system that includes a mobile robot and a remote input device. The input device may be a joystick that is used to move a camera and a mobile platform of the robot. The system may operate in a mode where the mobile platform moves in a camera reference coordinate system. The camera reference coordinate system is fixed to a viewing image provided by the camera so that movement of the robot corresponds to a direction viewed on a screen. This prevents disorientation during movement of the robot if the camera is panned across a viewing area.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: December 13, 2011
    Inventors: Yulun Wang, Charles S. Jordan, Keith P. Laby, Jonathan Southard, Marco Pinter, Brian Miller
  • Publication number: 20100099951
    Abstract: The present invention relates, generally, to controlling a steerable instrument having an elongate body. More particularly, the present invention relates to a system and method for sensing the shape of a steerable instrument and controlling the steerable instrument in response to a control signal from a user input device and a shape signal corresponding to the sensed shape of at least a portion of the steerable instrument. The present invention also relates to a system for sensing the shape of a flexible instrument with an optical shape sensor.
    Type: Application
    Filed: January 29, 2008
    Publication date: April 22, 2010
    Inventors: Keith P. Laby, Robert M. Ohline, Christoph M. Pistor, Charles E. Swinehart, Bruce R. Woodley, Amir Belson
  • Patent number: 7695481
    Abstract: A system for performing minimally invasive cardiac procedures includes a pair of surgical instruments coupled to a pair of robotic arms with end effectors that can be manipulated to hold and suture tissue. The robotic arms are coupled to a pair of master handles by a controller to produce a corresponding movement of the end effectors. The movement of the handles is scaled such that the end effectors movement corresponds differently, typically smaller, than the movement performed by the hands of the surgeon. The input button allows the surgeon to adjust the position of the handles without moving the end effector, so that the handles can be moved to a more comfortable position. The system may include a robotically controlled endoscope allowing the surgeon to remotely view a surgical site. The surgeon may manipulate handles and move end effectors to perform a cardiac procedure.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: April 13, 2010
    Assignee: Intuitive Surgical, Inc.
    Inventors: Yulun Wang, Darrin Uecker, Keith P. Laby, Jeff D. Wilson, Charles S. Jordan, James W. Wright, Modjtaba Ghodoussi