Patents by Inventor Keith R. Hajkowski

Keith R. Hajkowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250025866
    Abstract: Palladium-based catalyst systems are provided for reforming of hydrocarbons, along with methods for using such catalyst systems. The catalyst systems can be deposited or otherwise coated on a surface or structure, such as a monolith, to achieve improved activity and/or structural stability. It has been discovered that loss of catalytic activity for reforming over time can be reduced or minimized for palladium-based catalyst system by operating the reactor/performing a reaction cycle so that the portion of the reaction environment containing the palladium-based catalyst system is not exposed to oxidizing conditions at temperatures between 600° C. and 900° C. Optionally, the reactor can also be operated/the reaction cycle can also be designed so that during a reforming cycle, the peak temperature in the portion of the reaction environment containing the palladium-based catalyst system is 1300° C. or less.
    Type: Application
    Filed: October 7, 2024
    Publication date: January 23, 2025
    Inventors: Keith R. HAJKOWSKI, Wesley SATTLER, Michele A. WARREN
  • Publication number: 20240109775
    Abstract: Systems and methods are provided for performing reforming in a manner where the flows for providing heat for the endothermic reforming reaction are counter-current to the flows for the reforming reaction. Although the flows are counter-current, the systems and methods also allow the heating profile of the reactor to have a temperature peak toward the middle of the reactor, as opposed to at the end of the reactor. This shift of the temperature peak toward the middle allows for improved heat utilization and recovery during operation of the reactor.
    Type: Application
    Filed: September 29, 2023
    Publication date: April 4, 2024
    Inventors: Everett J. O'Neal, David C. Dankworth, Keith R. Hajkowski
  • Patent number: 11926795
    Abstract: Catalyst systems are provided for reforming of hydrocarbons, along with methods for using such catalyst systems. The catalyst systems can be deposited or otherwise coated on a surface or structure, such as a monolith, to achieve improved activity and/or structural stability. The metal oxide support layer can correspond to a thermally stable metal oxide support layer, such as a metal oxide support layer that is thermally phase stable at temperatures of 800° C. to 1600° C. The catalyst systems can be beneficial for use in cyclical reaction environments, such as reverse flow reactors or other types of reactors that are operated using flows in opposing directions and different times within a reaction cycle.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: March 12, 2024
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Changmin Chun, Wesley Sattler, Joseph E. Gatt, Keith R. Hajkowski, Everett J. O'Neal, William R. Gunther, Anastasios Skoulidas
  • Patent number: 11859133
    Abstract: Systems and methods are provided for using size-reversing materials in vessels where direct heating is used to at least partially provide heat for reforming reactions under cyclic reforming conditions. An example of a size-reversing material is the combination of NiO and Al2O3. It has been discovered that size-reversing materials can undergo a phase transition that can assist with re-dispersion of metal at elevated temperatures. This can assist with maintaining catalytic activity for reforming over longer time periods in the presence of cyclic reforming conditions.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: January 2, 2024
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Wesley Sattler, Keith R. Hajkowski, Changmin Chun, Partha Nandi, Vera Grankina, Joseph E. Gatt, Ning Ma, Anastasios Skoulidas, William R. Gunther, Everett J. O'Neal
  • Publication number: 20220112082
    Abstract: Catalyst systems are provided for reforming of hydrocarbons, along with methods for using such catalyst systems. The catalyst systems can be deposited or otherwise coated on a surface or structure, such as a monolith, to achieve improved activity and/or structural stability. The metal oxide support layer can correspond to a thermally stable metal oxide support layer, such as a metal oxide support layer that is thermally phase stable at temperatures of 800° C. to 1600° C. The catalyst systems can be beneficial for use in cyclical reaction environments, such as reverse flow reactors or other types of reactors that are operated using flows in opposing directions and different times within a reaction cycle.
    Type: Application
    Filed: October 7, 2021
    Publication date: April 14, 2022
    Inventors: Changmin Chun, Wesley Sattler, Joseph E. Gatt, Keith R. Hajkowski, Everett J. O'Neal, William R. Gunther, Anastasios Skoulidas
  • Publication number: 20220112432
    Abstract: Systems and methods are provided for using size-reversing materials in vessels where direct heating is used to at least partially provide heat for reforming reactions under cyclic reforming conditions. An example of a size-reversing material is the combination of NiO and Al2O3. It has been discovered that size-reversing materials can undergo a phase transition that can assist with re-dispersion of metal at elevated temperatures. This can assist with maintaining catalytic activity for reforming over longer time periods in the presence of cyclic reforming conditions.
    Type: Application
    Filed: October 7, 2021
    Publication date: April 14, 2022
    Inventors: Wesley Sattler, Keith R. Hajkowski, Changmin Chun, Partha Nandi, Vera Grankina, Joseph E. Gatt, Ning Ma, Anastasios Skoulidas, William R. Gunther, Everett J. O'Neal
  • Publication number: 20180339263
    Abstract: Provided are apparatus and systems for performing a swing adsorption process. This swing adsorption process may involve using a selectivation agent to selectivate the adsorbent material. The selectivation agent may be utilized with the swing adsorption process as an in-situ process. The adsorbent material may be utilized for swing adsorption processes to remove one or more contaminants from a feed stream.
    Type: Application
    Filed: May 17, 2018
    Publication date: November 29, 2018
    Inventors: Ralph C. Dehaas, Jean W. Beeckman, Ivy Dawn Johnson, Dana L. Mazzaro, Tilman W. Beutel, Bhupender S. Minhas, Keith R. Hajkowski