Patents by Inventor Keith R. Maile

Keith R. Maile has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11944430
    Abstract: Systems, devices, and methods for monitoring and assessing blood glucose level in a patient are discussed. An exemplary system receives physiologic information from a patient using an ambulatory medical device. The physiologic information is correlated to, and different from, a direct glucose level measurement. The system determines a glucose index indicative of an abnormal blood glucose level using the received physiologic information by the two or more physiologic sensors. The system may use the glucose index to initiate or adjust a therapy, or to trigger a glucose sensor, separate from the two or more physiologic sensors, to directly measure blood glucose concentration.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: April 2, 2024
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Bin Mi, Pramodsingh Hirasingh Thakur, Keith R. Maile, Stephen B. Ruble, Jonathan Bennett Shute
  • Patent number: 11931592
    Abstract: Improved devices, circuits and methods of operation in implantable stimulus systems. An implantable defibrillator may comprise an H-bridge output circuit having low and high sides, with a current controlling circuit coupled to the high side of the H-bridge output circuit and a current monitoring circuit coupled to the low side of the H-bridge output circuit. Alternate current paths to the output of the H-bridge, or to the H-Bridge itself, are used for delivering different therapies to the patient.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: March 19, 2024
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brandon Tyler Keil, William J. Linder, Keith R. Maile
  • Publication number: 20240059622
    Abstract: A method of metallizing a ceramic substrate includes depositing a barrier layer onto the substrate, depositing a tie layer onto the barrier layer, and depositing a metal layer onto the tie layer to metallize the substrate. The barrier layer may include an oxygen rich material, a nitrogen rich material, or a carbon rich material.
    Type: Application
    Filed: July 26, 2023
    Publication date: February 22, 2024
    Inventors: Matthew P. Jones, Sverre Gropen, Jean M. Bobgan, Keith R. Maile
  • Patent number: 11903589
    Abstract: A medical system may include a left atrial appendage closure device including an expandable framework and a proximal hub centered on a central longitudinal axis of the framework. An insert may be disposed within the proximal hub and include a collar configured to engage the proximal hub, a recess extending into the insert from a proximal end, and a post member disposed within the recess. The post member may be radially spaced apart from the collar and may extend proximally from a distal end of the recess to a proximal surface. The insert may include a first connection structure disposed distal of the proximal surface. The medical system may include a delivery catheter having a second connection structure configured to engage the first connection structure in a delivery configuration. The distal end of the delivery catheter includes a hollow portion configured to receive the post member in the delivery configuration.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: February 20, 2024
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Jeffrey E. Stahmann, Bin Mi, Eric Wedul, Keith R. Maile
  • Publication number: 20240024670
    Abstract: Embodiments herein relate to medical devices and methods for using the same to treat cancerous tumors within a bodily tissue. A medical device system is included having an electric field generating circuit configured to generate one or more electric fields and a control circuit in communication with the electric field generating circuit. The control circuit configured to control delivery of the one or more electric fields from the electric field generating circuit. The system can include two or more electrodes to deliver the electric fields to a site of a cancerous tumor within a patient and a temperature sensor to measure the temperature of tissue at the site of the cancerous tumor. The control circuit can cause the electric field generating circuit to generate one or more electric fields at frequencies selected from a range of between 10 kHz to 1 MHz. Other embodiments are also included herein.
    Type: Application
    Filed: July 27, 2023
    Publication date: January 25, 2024
    Inventors: Brian L. Schmidt, Benjamin Keith Stein, Keith R. Maile, William J. Linder, Aleksandra Kharam
  • Patent number: 11864928
    Abstract: Systems and methods for monitoring patients with respiratory diseases are described. A system may include a sensor circuit configured to sense one or more physiological signals indicative of respiratory sounds, and a spectral analyzer to generate first and second spectral contents at respective first and second frequency bands. The system may produce a respiratory anomaly indicator using the first and second spectral contents, or additionally with other physiological parameters. The system may detect an onset or progression of a target respiratory condition such as asthma or chronic obstructive pulmonary disease using the respiratory anomaly indicator, or to trigger or adjust a therapy.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: January 9, 2024
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Keith R. Maile, Pramodsingh Hirasingh Thakur, Michael J. Kane, Bin Mi, Ron A. Balczewski, Jeffrey E. Stahmann
  • Patent number: 11862804
    Abstract: A battery includes a battery case including a housing having side walls defining a first open end and a second open end, the battery case including a separate top cover to cover the first open end of the housing and a separate bottom cover to cover the second open end of the housing; a first electrode located within the case; a second electrode located within the case; a first terminal coupled to the first electrode and exposed outside the case; and a second terminal coupled to the second electrode and exposed outside the case.
    Type: Grant
    Filed: August 16, 2022
    Date of Patent: January 2, 2024
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Kurt E. Koshiol, Benjamin J. Haasl, Joseph Charles Delmedico, Aaron Peter Brooks, Steven Lawrence Frandrup, Andrew Dauwalter, Keith R. Maile, Ignacio Chi
  • Patent number: 11855337
    Abstract: A capacitively loaded loop antenna for an implantable medical device is disclosed comprising a feed extending from a conductive surface of an implantable housing, a radiating element having a cross section larger than the feed, and a return coupling the radiating element to a conductive surface of the implantable housing. The radiating element can have a height above the top surface of the implantable housing, creating a capacitance between the radiating element and the conductive surface of the implantable housing configured to counteract the inductance of the capacitively loaded loop antenna.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: December 26, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Daniel Joseph Landherr, Niharika Varanasi, John E. Hansen, Keith R. Maile, Benjamin J. Haasl, Jason Lahr
  • Patent number: 11850422
    Abstract: Embodiments herein relate to medical devices and methods for using the same to treat cancerous tumors within a bodily tissue. A medical device system is included having an electric field generating circuit and control circuitry configured to control delivery of the one or more electric fields from the electric field generating circuit to the site of the cancerous tissue. An implantable lead is included having a lead body including a first electrical conductor disposed within the lead body, and a first electrode coupled to the lead body, the first electrode in electrical communication with the first electrical conductor, wherein the first electrical conductor forms part of an electrical circuit by which the electric fields from the electric field generating circuit are delivered to the site of the cancerous tissue, and the first electrode can include a conductive coil filar disposed around the lead body. Other embodiments are also included herein.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: December 26, 2023
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Brian L Schmidt, Devon N. Arnholt, Keith R. Maile, Sarah Melissa Gruba, William J. Linder
  • Publication number: 20230381525
    Abstract: Embodiments herein relate to medical device systems including features to enable secure wireless communications between components thereof. In an embodiment, a medical device system is included having an implantable medical device packaging unit and an implantable device. The implantable device can include a control circuit and a communications antenna. The implantable device can be configured to fit within the implantable medical device packaging unit prior to implantation in a patient. The system can also include a data bearing tag, wherein the data bearing tag is disposed on or in the implantable medical device packaging unit. In some embodiments the system can also include an external communication device. The external communication device can be configured to receive data from the data bearing tag enabling secure wireless communications between the implantable device and the external communication device. Other embodiments are also included herein.
    Type: Application
    Filed: May 23, 2023
    Publication date: November 30, 2023
    Inventors: Daniel Joseph Landherr, Ron A. Balczewski, Keith R. Maile, William J. Linder
  • Patent number: 11813463
    Abstract: A ventricularly implantable medical device that includes a sensing module that is configured to detect an atrial fiducial and identify an atrial contraction based at least on part on the detected atrial fiducial. Control circuitry in the implantable medical device is configured to deliver a ventricular pacing therapy to a patient's heart based at least in part on the identified atrial contraction, and can automatically switch or revert the ventricular pacing therapies on the fly.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: November 14, 2023
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Jeffrey E. Stahmann, Keith R. Maile, Krzysztof Z. Siejko, Allan Charles Shuros, William J. Linder, Benjamin J. Haasl, Brendan Early Koop, Michael J. Kane
  • Publication number: 20230337988
    Abstract: Systems and methods for detecting a physiological event or estimating a physiological parameter using ambulatory electrograms of a subject are discussed. An exemplary system includes a computing device that can receive ambulatory electrograms collected by an ambulatory medical device (AMD) associated with a subject, and apply the ambulatory electrograms to a trained machine learning model to estimate a physiological parameter or to detect a physiological event in the subject. The same or a different machine learning model can be trained to detect an operating status of the AMD using the ambulatory electrograms. The system comprises an output device to output the estimated physiological parameter, the detected physiological event, or the detected device operating status a user or a process such as to initiate or titrate a therapy.
    Type: Application
    Filed: April 18, 2023
    Publication date: October 26, 2023
    Inventors: Ramesh Wariar, Viktoria A. Averina, Deepa Mahajan, Keith R. Maile, Bin Mi, Craig Stolen, Scott R. Vanderlinde
  • Publication number: 20230330416
    Abstract: Embodiments herein relate to medical devices and methods for using the same to treat cancerous tumors within a bodily tissue. A medical device system is included having at least one electric field generating circuit configured to generate one or more electric fields; control circuitry in communication with the electric field generating circuit, the control circuitry configured to control delivery of the one or more electric fields from the at least one electric field generating circuit; and two or more electrodes to deliver the electric fields to the site of a cancerous tumor within a patient. At least one electrode can be configured to be implanted. At least one electrode can be configured to be external. The control circuitry can cause the electric field generating circuit to generate one or more electric fields at frequencies selected from a range of between 10 kHz to 1 MHz.
    Type: Application
    Filed: March 20, 2023
    Publication date: October 19, 2023
    Inventors: Brian L. Schmidt, Devon N. Arnholt, Benjamin Keith Stein, Keith R. Maile, William J. Linder, Ron A. Balczewski, Jacob M. Ludwig, Aleksandra Kharam
  • Publication number: 20230256240
    Abstract: Implantable leadless pacing devices and medical device systems including an implantable leadless pacing device are disclosed. An example implantable leadless pacing device may include a pacing capsule. The pacing capsule may include a housing. The housing may have a proximal region and a distal region. A first electrode may be disposed along the distal region. One or more anchoring members may be coupled to the distal region. The anchoring members may each include a region with a compound curve.
    Type: Application
    Filed: April 28, 2023
    Publication date: August 17, 2023
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: BENJAMIN J. HAASL, DANA SACHS, KEITH R. MAILE
  • Patent number: 11712561
    Abstract: Embodiments herein relate to medical devices and methods for using the same to treat cancerous tumors within a bodily tissue. A medical device system is included having an electric field generating circuit configured to generate one or more electric fields and a control circuit in communication with the electric field generating circuit. The control circuit configured to control delivery of the one or more electric fields from the electric field generating circuit. The system can include two or more electrodes to deliver the electric fields to a site of a cancerous tumor within a patient and a temperature sensor to measure the temperature of tissue at the site of the cancerous tumor. The control circuit can cause the electric field generating circuit to generate one or more electric fields at frequencies selected from a range of between 10 kHz to 1 MHz. Other embodiments are also included herein.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: August 1, 2023
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Brian L. Schmidt, Benjamin Keith Stein, Keith R. Maile, William J. Linder, Aleksandra Kharam
  • Patent number: 11691006
    Abstract: Embodiments herein relate to a medical device for treating a cancerous tumor, the medical device having a first lead including a first wire and second wire; a second lead can include a third wire and fourth wire; and a first electrode in electrical communication with the first wire, a second electrode in electrical communication with the second wire, a third electrode in electrical communication with the third wire, and a fourth electrode in electrical communication with the fourth wire. The first and third electrodes form a supply electrode pair configured to deliver one or more electric fields to the cancerous tumor. The second and fourth electrodes form a sensing electrode pair configured to measure an impedance of the cancerous tumor independent of an impedance of the first electrode, the first wire, the third electrode, the third wire, and components in electrical communication therewith. Other embodiments are also included herein.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: July 4, 2023
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Brian L. Schmidt, Devon N. Arnholt, Benjamin Keith Stein, Keith R. Maile, William J. Linder, Ron A. Balczewski, Aleksandra Kharam
  • Publication number: 20230201605
    Abstract: Disclosed are medical devices with an acceleration sensor configured to generate acceleration data, a processor, and a memory. The memory, which may be a non-transitory computer readable medium, contains computer-executable instructions that, when executed by the processor, causes the processor to perform the following: obtain the acceleration data from a first range of time and a second range of time different from the first range, generate heart sound data based on the acceleration data, and determine that the medical device has flipped in orientation during the second range of time by comparing the heart sound data obtained during the first range of time with the heart sound data obtained during the second range of time.
    Type: Application
    Filed: December 27, 2022
    Publication date: June 29, 2023
    Inventors: Jonathan B. Shute, Pramodsingh H. Thakur, John D. Hatlestad, Keith R. Maile
  • Patent number: 11679266
    Abstract: Embodiments of the present disclosure relate to implantable medical devices (IMDs). In an exemplary embodiment, an IMD comprises: a housing including a plurality of feedthroughs extending through the housing, a first electrode, a second electrode, and a biocompatible circuit board disposed around an outer surface of the housing. The biocompatible circuit board comprising a plurality of traces, wherein a first trace of the plurality of traces is coupled to the first electrode and a first feedthrough of the plurality of feedthroughs, and a second trace of the plurality of traces is coupled to the first electrode and a second feedthrough of the plurality of feedthroughs.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: June 20, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: James Michael English, Jean M. Bobgan, Keith R. Maile, Ron A. Balczewski
  • Patent number: 11666752
    Abstract: Implantable leadless pacing devices and medical device systems including an implantable leadless pacing device are disclosed. An example implantable leadless pacing device may include a pacing capsule. The pacing capsule may include a housing. The housing may have a proximal region and a distal region. A first electrode may be disposed along the distal region. One or more anchoring members may be coupled to the distal region. The anchoring members may each include a region with a compound curve.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: June 6, 2023
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Benjamin J. Haasl, Dana Sachs, Keith R. Maile
  • Patent number: 11666749
    Abstract: An implantable antibacterial barrier device for an elongated medical device, the elongated medical device configured to extend from a first site, through a second site, to a third site. The implantable antibacterial barrier device includes a housing configured to be disposed at the first site, a working electrode configured to be disposed at the second site, and a reference electrode configured to be disposed at the first site. The housing includes barrier circuitry. The working electrode electrically is coupled to the barrier circuitry. The reference electrode is electrically coupled to the barrier circuitry. The barrier circuitry is configured to selectively maintain the working electrode at a negative electrical potential relative to the reference electrode to form an antibacterial barrier.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: June 6, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey E. Stahmann, Keith R. Maile, Danielle Frankson, Craig M. Stolen, David J. Ternes