Patents by Inventor Keith Ryan Green

Keith Ryan Green has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240109564
    Abstract: A method is provided that can include activating at least two wireless communication channels in parallel, between a first wireless transceiver and a second wireless transceiver. Each of the at least two wireless communication channels can operate at a different radio carrier frequency, and the first wireless transceiver may be part of a first vehicle. The method can also include transmitting, by the first wireless transceiver, common information in parallel on the at least two wireless communication channels to the second wireless transceiver and deactivating the at least two wireless communication channels.
    Type: Application
    Filed: December 12, 2023
    Publication date: April 4, 2024
    Inventors: Padam Dhoj Swar, Carl L. Haas, Danial Rice, Rebecca W. Dreasher, Adam Hausmann, Matthew Steven Vrba, Edward J. Kuchar, James Lucas, Andrew Ryan Staats, Jerrid D. Chapman, Jeffrey D. Kernwein, Janmejay Tripathy, Stephen Craven, Tania Lindsley, Derek K. Woo, Ann K. Grimm, Scott Sollars, Phillip A. Burgart, James Allen Oswald, Shannon K. Struttmann, Stuart J. Barr, Keith Smith, Francois P. Pretorius, Craig K. Green, Kendrick Gawne, Irwin Morris, Joseph W. Gorman, Srivallidevi Muthusami, Mahesh Babu Natarajan, Jeremiah Dirnberger, Adam Franco
  • Patent number: 11899082
    Abstract: An integrated circuit includes a doped region having a first conductivity type formed in a semiconductor substrate having a second conductivity type. A dielectric layer is located between the doped region and a surface plane of the semiconductor substrate, and a polysilicon layer is located over the dielectric layer. First, second, third and fourth terminals are connected to the doped region, the first and third terminals defining a conductive path through the doped region and the second and fourth terminals defining a second conductive path through the doped region, the second path intersecting the first path.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: February 13, 2024
    Assignee: Texas Instruments Incorporated
    Inventors: Keith Ryan Green, Tony Ray Larson
  • Patent number: 11782102
    Abstract: A microelectronic device has a Hall sensor that includes a Hall plate in a semiconductor material. The Hall sensor includes contact regions in the semiconductor material, contacting the Hall plate. The Hall sensor includes an isolation structure with a dielectric material contacting the semiconductor material, on at least two opposite sides of each of the contact regions. The isolation structure is laterally separated from the contact regions by gaps. The Hall sensor further includes a conductive spacer over the gaps, the conductive spacer being separated from the semiconductor material by an insulating layer.
    Type: Grant
    Filed: October 22, 2021
    Date of Patent: October 10, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Keith Ryan Green, Erika Lynn Mazotti, William David French, Ricky Alan Jackson
  • Publication number: 20230129179
    Abstract: A microelectronic device has a Hall sensor that includes a Hall plate in a semiconductor material. The Hall sensor includes contact regions in the semiconductor material, contacting the Hall plate. The Hall sensor includes an isolation structure with a dielectric material contacting the semiconductor material, on at least two opposite sides of each of the contact regions. The isolation structure is laterally separated from the contact regions by gaps. The Hall sensor further includes a conductive spacer over the gaps, the conductive spacer being separated from the semiconductor material by an insulating layer.
    Type: Application
    Filed: October 22, 2021
    Publication date: April 27, 2023
    Inventors: Keith Ryan Green, Erika Lynn Mazotti, William David French, Ricky Alan Jackson
  • Patent number: 11588101
    Abstract: A Hall sensor includes a Hall well, such as an implanted region in a surface layer of a semiconductor structure, and four doped regions spaced apart from one another in the implanted region. The implanted region and the doped regions include majority carriers of the same conductivity type. The sensor also includes a dielectric layer that extends over the implanted region, and an electrode layer over the dielectric layer to operate as a control gate to set or adjust the sensor performance. A first supply circuit provides a first bias signal to a first pair of the terminals, and a second supply circuit provides a second bias signal to the electrode layer.
    Type: Grant
    Filed: March 30, 2019
    Date of Patent: February 21, 2023
    Assignee: Texas Instruments Incorporated
    Inventor: Keith Ryan Green
  • Publication number: 20230048022
    Abstract: A Hall effect sensor including a Hall element disposed at a surface of a semiconductor body, including a first doped region of a first conductivity type disposed over and abutted by an isolated second doped region of a second conductivity type. First through fourth terminals of the Hall element are in electrical contact with the first doped region, and a fifth terminal in electrical contact with the second doped region. A Hall effect sensor includes a first current source coupled to the first terminal of the Hall element, and common mode feedback regulation circuitry. The common mode feedback regulation circuitry has an output coupled to the third terminal and a ground node, and having an input coupled to the second and fourth terminals of the Hall element, and an output coupled to the third terminal and a ground node, where the second doped region is coupled to the third terminal.
    Type: Application
    Filed: August 13, 2021
    Publication date: February 16, 2023
    Inventors: Charles Parkhurst, Gabriel Eugenio De La Cruz Hernandez, Keith Ryan Green, Dimitar Trifonov, Chao-Hsuian Tsay
  • Publication number: 20220357369
    Abstract: In one example, circuitry is formed in a semiconductor die. A magnetic concentrator is formed on a surface of the semiconductor die and over the circuitry. An isolation spacer is placed on a lead frame. The semiconductor die is placed on the isolation spacer, and the magnetic concentrator is aligned to overlap the lead frame. Electrical interconnects are formed between the semiconductor die and the lead frame.
    Type: Application
    Filed: July 22, 2022
    Publication date: November 10, 2022
    Inventors: Dok Won LEE, Jo BITO, Keith Ryan GREEN
  • Patent number: 11422167
    Abstract: A packaged current sensor includes a lead frame, an integrated circuit, an isolation spacer, a first magnetic concentrator, and a second magnetic concentrator. The lead frame includes a conductor. The isolation spacer is between the lead frame and the integrated circuit. The first magnetic concentrator is aligned with the conductor. The second magnetic concentrator is aligned with the conductor.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: August 23, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Dok Won Lee, Jo Bito, Keith Ryan Green
  • Patent number: 11333719
    Abstract: A semiconductor device includes first and second Hall-effect sensors. Each sensor has first and third opposite terminals and second and fourth opposite terminals. A control circuit is configured to direct a current through the first and second sensors and to measure a corresponding Hall voltage of the first and second sensors. Directing includes applying a first source voltage in a first direction between the first and third terminals of the first sensor and applying a second source voltage in a second direction between the first and third terminals of the second sensor. A third source voltage is applied in a third direction between the second and fourth terminals of the first sensor, and a fourth source voltage is applied in a fourth direction between the second and fourth terminals of the second sensor. The third direction is rotated clockwise from the first direction and the fourth direction rotated counter-clockwise from the second direction.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: May 17, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Keith Ryan Green, Dimitar Trifonov, Tony Ray Larson
  • Publication number: 20220075009
    Abstract: An integrated circuit includes a doped region having a first conductivity type formed in a semiconductor substrate having a second conductivity type. A dielectric layer is located between the doped region and a surface plane of the semiconductor substrate, and a polysilicon layer is located over the dielectric layer. First, second, third and fourth terminals are connected to the doped region, the first and third terminals defining a conductive path through the doped region and the second and fourth terminals defining a second conductive path through the doped region, the second path intersecting the first path.
    Type: Application
    Filed: September 9, 2020
    Publication date: March 10, 2022
    Inventors: Keith Ryan Green, Tony Ray Larson
  • Publication number: 20220075007
    Abstract: A semiconductor device includes first and second Hall-effect sensors. Each sensor has first and third opposite terminals and second and fourth opposite terminals. A control circuit is configured to direct a current through the first and second sensors and to measure a corresponding Hall voltage of the first and second sensors. Directing includes applying a first source voltage in a first direction between the first and third terminals of the first sensor and applying a second source voltage in a second direction between the first and third terminals of the second sensor. A third source voltage is applied in a third direction between the second and fourth terminals of the first sensor, and a fourth source voltage is applied in a fourth direction between the second and fourth terminals of the second sensor. The third direction is rotated clockwise from the first direction and the fourth direction rotated counter-clockwise from the second direction.
    Type: Application
    Filed: September 9, 2020
    Publication date: March 10, 2022
    Inventors: Keith Ryan Green, Dimitar Trifonov, Tony Ray Larson
  • Patent number: 11237223
    Abstract: A structure includes a substrate which includes a surface. The structure also includes a horizontal-type Hall sensor positioned within the substrate and below the surface of the substrate. The structure further includes a patterned magnetic concentrator positioned above the surface of the substrate, and a protective overcoat layer positioned above the magnetic concentrator.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: February 1, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jo Bito, Benjamin Stassen Cook, Dok Won Lee, Keith Ryan Green, Ricky Alan Jackson, William David French
  • Publication number: 20220018879
    Abstract: A packaged current sensor includes a lead frame, an integrated circuit, an isolation spacer, a first magnetic concentrator, and a second magnetic concentrator. The lead frame includes a conductor. The isolation spacer is between the lead frame and the integrated circuit. The first magnetic concentrator is aligned with the conductor. The second magnetic concentrator is aligned with the conductor.
    Type: Application
    Filed: July 17, 2020
    Publication date: January 20, 2022
    Inventors: Dok Won LEE, Jo BITO, Keith Ryan GREEN
  • Patent number: 11047746
    Abstract: A device having a first terminal region and a second terminal region. The first terminal region includes fine-tune (FT) metal stripes that are separated from each other by a first distance along the longitudinal direction. The second terminal region is spaced apart from the first terminal region by at least an inter-terminal distance. The second terminal region includes coarse-tune (CT) metal stripes that are separated from each other by a second distance along the longitudinal direction. The second distance is greater than the first distance, and the inter-terminal distance greater than the second distance. Each of the FT metal stripes may be selected as a first access location, and each of the CT metal stripes may be selected as a second access location. A pair of selected first and second access locations access a sheet resistance defined by a distance therebetween.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: June 29, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Keith Ryan Green, Byron Jon Roderick Shulver
  • Publication number: 20210072327
    Abstract: A structure includes a substrate which includes a surface. The structure also includes a horizontal-type Hall sensor positioned within the substrate and below the surface of the substrate. The structure further includes a protective overcoat layer positioned above the surface of the substrate, and a sphere-shaped magnetic concentrator positioned above the protective overcoat layer. Instead of or in addition to the sphere-shaped magnetic concentrator, the structure may include an embedded magnetic concentrator positioned within the substrate and below the horizontal-type Hall sensor.
    Type: Application
    Filed: September 9, 2019
    Publication date: March 11, 2021
    Inventors: Jo BITO, Benjamin Stassen COOK, Dok Won LEE, Keith Ryan GREEN, Kenji OTAKE
  • Publication number: 20210025948
    Abstract: A structure includes a substrate which includes a surface. The structure also includes a horizontal-type Hall sensor positioned within the substrate and below the surface of the substrate. The structure further includes a patterned magnetic concentrator positioned above the surface of the substrate, and a protective overcoat layer positioned above the magnetic concentrator.
    Type: Application
    Filed: July 24, 2019
    Publication date: January 28, 2021
    Inventors: Jo BITO, Benjamin Stassen COOK, Dok Won LEE, Keith Ryan GREEN, Ricky Alan JACKSON, William David FRENCH
  • Patent number: 10872925
    Abstract: A CMOS integrated circuit includes a Hall sensor having a Hall plate formed in a first isolation layer which is formed concurrently with a second isolation layer under a MOS transistor. A first shallow well with a conductivity type opposite from the first isolation layer is formed over, and extending to, the Hall plate. The first shallow well is formed concurrently with a second shallow well under the MOS transistor. The Hall sensor may be a horizontal Hall sensor for sensing magnetic fields oriented perpendicular to the top surface of the substrate of the integrated circuit, or may be a vertical Hall sensor for sensing magnetic fields oriented parallel to the top surface of the substrate of the integrated circuit.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: December 22, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Keith Ryan Green, Rajni J. Aggarwal, Ajit Sharma
  • Publication number: 20200313078
    Abstract: A Hall sensor includes a Hall well, such as an implanted region in a surface layer of a semiconductor structure, and four doped regions spaced apart from one another in the implanted region. The implanted region and the doped regions include majority carriers of the same conductivity type. The sensor also includes a dielectric layer that extends over the implanted region, and an electrode layer over the dielectric layer to operate as a control gate to set or adjust the sensor performance. A first supply circuit provides a first bias signal to a first pair of the terminals, and a second supply circuit provides a second bias signal to the electrode layer.
    Type: Application
    Filed: March 30, 2019
    Publication date: October 1, 2020
    Applicant: Texas Instruments Incorporated
    Inventor: Keith Ryan Green
  • Publication number: 20200240849
    Abstract: A device having a first terminal region and a second terminal region. The first terminal region includes fine-tune (FT) metal stripes that are separated from each other by a first distance along the longitudinal direction. The second terminal region is spaced apart from the first terminal region by at least an inter-terminal distance. The second terminal region includes coarse-tune (CT) metal stripes that are separated from each other by a second distance along the longitudinal direction. The second distance is greater than the first distance, and the inter-terminal distance greater than the second distance. Each of the FT metal stripes may be selected as a first access location, and each of the CT metal stripes may be selected as a second access location. A pair of selected first and second access locations access a sheet resistance defined by a distance therebetween.
    Type: Application
    Filed: April 20, 2020
    Publication date: July 30, 2020
    Inventors: Keith Ryan Green, Byron Jon Roderick Shulver
  • Patent number: 10680164
    Abstract: A Hall effect sensor comprises a semiconductor substrate, a first well formed in the semiconductor substrate, a first ohmic contact formed in the first well, a second ohmic contact formed in the first well, a first terminal electrically coupled to the first ohmic contact, a second terminal electrically coupled to the second ohmic contact, and a first metal layer formed over the semiconductor substrate. The first metal layer comprises a first interconnect and a first trace, where the first trace is formed over the first well, and where the first interconnect electrically couples a first part of the first well to a second part of the first well. The first and second ohmic contacts are each positioned between the first part and the second part of the first well, where the first interconnect is electrically isolated from the first trace.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: June 9, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Keith Ryan Green, Dok Won Lee