Patents by Inventor Keith Schakel

Keith Schakel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7809852
    Abstract: A system and method for converting low-jitter, interleaved frame traffic, such as that generated in an IP network, to high jitter traffic to improve the utilization of bandwidth on arbitrated loops such as Fibre Channel Arbitrated Loops. Embodiments of a high jitter scheduling algorithm may be used in devices such as network switches that interface an arbitrated loop with an IP network that carries low-jitter traffic. The high jitter algorithm may use a separate queue for each device on the arbitrated loop, or alternatively may use one queue for two or more devices. Incoming frames are distributed among the queues based upon each frame's destination device. The scheduling algorithm may then service the queues and forward queued frames to the devices from the queues. In one embodiment, the queues are serviced in a round-robin fashion. In one embodiment, each queue may be serviced for a programmed limit.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: October 5, 2010
    Assignee: Brocade Communications Systems, Inc.
    Inventors: Rodney N. Mullendore, Stuart F. Oberman, Anil Mehta, Keith Schakel, Kamran Malik
  • Patent number: 7406041
    Abstract: A system and method for late-dropping packets in a network switch. A network switch may include multiple input ports, multiple output ports, and a shared random access memory coupled to the input ports and output ports by data transport logic. Packets entering the switch may be subject to input thresholding, and may be assigned to a flow within a group. A portion of a packet subject to input thresholding may be accepted into the switch and assigned to a group and flow even if, at the time of arrival of the portion, there are not enough resources available to receive the remainder of the packet. This partial receipt of the packet is allowed because of the possibility of additional resources becoming available between the time of receipt of and resource allocation for the portion of the packet and receipt of subsequent portions of the packet.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: July 29, 2008
    Assignee: Brocade Communications Systems, Inc.
    Inventors: Rodney N. Mullendore, Stuart F. Oberman, Anil Mehta, Keith Schakel, Kamran Malik
  • Publication number: 20080109206
    Abstract: A memory subsystem is provided including an interface circuit adapted for communication with a system and a majority of address or control signals of a first number of memory circuits. The interface circuit includes emulation logic for emulating at least one memory circuit of a second number.
    Type: Application
    Filed: October 30, 2007
    Publication date: May 8, 2008
    Inventors: Suresh Rajan, Keith Schakel, Michael Smith, David Wang, Frederick Weber
  • Publication number: 20080109597
    Abstract: One embodiment sets forth an interface circuit configured to manage refresh command sequences that includes a system interface adapted to receive a refresh command from a memory controller, clock frequency detection circuitry configured to determine the timing for issuing staggered refresh commands to two or more memory devices coupled to the interface circuit based on the refresh command received from the memory controller, and at least two refresh command sequence outputs configured to generate the staggered refresh commands for the two or more memory devices
    Type: Application
    Filed: October 30, 2007
    Publication date: May 8, 2008
    Inventors: Keith Schakel, Suresh Rajan, Michael Smith, David Wang
  • Publication number: 20080109598
    Abstract: One embodiment sets forth an interface circuit configured to manage refresh command sequences that includes a system interface adapted to receive a refresh command from a memory controller, dock frequency detection circuitry configured to determine the timing for issuing staggered refresh commands to two or more memory devices coupled to the interface circuit based on the refresh command received from the memory controller.
    Type: Application
    Filed: October 30, 2007
    Publication date: May 8, 2008
    Inventors: Keith Schakel, Suresh Natarajan Rajan, Michael John Smith, David Wang
  • Publication number: 20080109595
    Abstract: A memory circuit system and method are provided. An interface circuit is capable of communication with a plurality of memory circuits and a system. In use, the interface circuit is operable to interface the memory circuits and the system for reducing command scheduling constraints of the memory circuits.
    Type: Application
    Filed: October 30, 2007
    Publication date: May 8, 2008
    Inventors: Suresh Rajan, Keith Schakel, Michael Sebastian Smith, David Wang, Frederick Weber
  • Publication number: 20080104314
    Abstract: A memory subsystem is provided including an interface circuit adapted for communication with a system and a majority of address or control signals of a first number of memory circuits. The interface circuit includes emulation logic for emulating at least one memory circuit of a second number.
    Type: Application
    Filed: October 30, 2007
    Publication date: May 1, 2008
    Inventors: Suresh Rajan, Keith Schakel, Michael Smith, David Wang, Frederick Weber
  • Publication number: 20080103753
    Abstract: A memory subsystem is provided including an interface circuit adapted for communication with a system and a majority of address or control signals of a first number of memory circuits. The interface circuit includes emulation logic for emulating at least one memory circuit of a second number.
    Type: Application
    Filed: October 30, 2007
    Publication date: May 1, 2008
    Inventors: Suresh Rajan, Keith Schakel, Michael Sebastian Smith, David Wang, Frederick Weber
  • Publication number: 20080080548
    Abstract: A system and method for managing the allocation of Time Division Multiplexing (TDM) timeslots in a network switch. The network switch may use a TDM cycle comprising multiple timeslots to manage shared resources and to schedule data ingress and egress through the ports of the current configuration, wherein each port is assigned one or more timeslots. The network switch may be reprogrammed to support one of multiple timeslot assignment schemes for one of multiple port configurations. The network switch may support configurations with varying numbers of ports, e.g. 8- and 16-port configurations. A network switch may also support configurations where two or more ports are combined to form one port, for example, a 2 Gbs Fibre Channel port. To meet the requirements of the various configurations, the timeslot assignment scheme may be reprogrammed to meet the scheduling requirements of each of the possible port configurations.
    Type: Application
    Filed: October 11, 2007
    Publication date: April 3, 2008
    Applicant: NISHAN SYSTEMS, INC.
    Inventors: Rodney Mullendore, Stuart Oberman, Anil Mehta, Keith Schakel, Kamran Malik
  • Publication number: 20080037353
    Abstract: A memory circuit power management system and method are provided. In use, an interface circuit is in communication with a plurality of memory circuits and a system. The interface circuit is operable to interface the memory circuits and the system for performing a power management operation in association with at least a portion of the memory circuits. Such power management operation is performed during a latency associated with one or more commands directed to at least a portion of the memory circuits.
    Type: Application
    Filed: October 20, 2006
    Publication date: February 14, 2008
    Inventors: Suresh Rajan, Keith Schakel, Michael Sebastian Smith, David Wang, Frederick Weber
  • Publication number: 20080028136
    Abstract: One embodiment sets forth an interface circuit configured to manage refresh command sequences that includes a system interface adapted to receive a refresh command from a memory controller, clock frequency detection circuitry configured to determine the timing for issuing staggered refresh commands to two or more memory devices coupled to the interface circuit based on the refresh command received from the memory controller, and at least two refresh command sequence outputs configured to generate the staggered refresh commands for the two or more memory devices
    Type: Application
    Filed: July 25, 2007
    Publication date: January 31, 2008
    Inventors: Keith Schakel, Suresh Rajan, Michael John Smith, David Wang
  • Patent number: 7283556
    Abstract: A system and method for managing the allocation of Time Division Multiplexing (TDM) timeslots in a network switch. The network switch may use a TDM cycle comprising multiple timeslots to manage shared resources and to schedule data ingress and egress through the ports of the current configuration, wherein each port is assigned one or more timeslots. The network switch may be reprogrammed to support one of multiple timeslot assignment schemes for one of multiple port configurations. The network switch may support configurations with varying numbers of ports, e.g. 8- and 16-port configurations. A network switch may also support configurations where two or more ports are combined to form one port, for example, a 2 Gbs Fibre Channel port. To meet the requirements of the various configurations, the timeslot assignment scheme may be reprogrammed to meet the scheduling requirements of each of the possible port configurations.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: October 16, 2007
    Assignee: Nishan Systems, Inc.
    Inventors: Rodney N. Mullendore, Stuart F. Oberman, Anil Mehta, Keith Schakel, Kamran Malik
  • Publication number: 20070204075
    Abstract: A memory circuit system and method are provided. An interface circuit is capable of communication with a plurality of memory circuits and a system. In use, the interface circuit is operable to interface the memory circuits and the system for reducing command scheduling constraints of the memory circuits.
    Type: Application
    Filed: February 8, 2007
    Publication date: August 30, 2007
    Inventors: Suresh Rajan, Keith Schakel, Michael Smith, David Wang, Frederick Weber
  • Publication number: 20070192563
    Abstract: A memory circuit system and method are provided. An interface circuit is capable of communication with a plurality of memory circuits and a system. In use, the interface circuit is operable to translate an address associated with a command communicated between the system and the memory circuits.
    Type: Application
    Filed: February 8, 2007
    Publication date: August 16, 2007
    Inventors: Suresh Rajan, Keith Schakel, Michael Smith, David Wang, Frederick Weber
  • Patent number: 7227841
    Abstract: A system and method for input thresholding packets in a network switch. A network switch may include multiple input ports, multiple output ports, and a shared random access memory coupled to the input ports and output ports by data transport logic. Packets entering the network switch may be assigned to one of a plurality of threshold groups and to one of a plurality of flows within the threshold group. In one embodiment, each threshold group may be divided into a plurality of levels of operation. As resources are allocated or freed by the threshold group, the threshold group may dynamically move up or down in the levels of operation. Within each level, one or more different values may be used as level boundaries and resource limits for flows within the threshold group. In one embodiment, programmable registers may be used to store these values.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: June 5, 2007
    Assignee: Nishan Systems, Inc.
    Inventors: Rodney N. Mullendore, Stuart F. Oberman, Anil Mehta, Keith Schakel, Kamran Malik
  • Patent number: 7215680
    Abstract: A system and method for enabling a network switch to transmit queued packets to a device when opened by the device, and thus to utilize the Fibre Channel Arbitrated Loop (FC-AL) in full-duplex mode when possible. The switch may include a plurality of queues each associated with a device on the FC-AL for queuing incoming packets for the device. The switch may determine a next non-empty queue, open the device associated with the queue, and send packets to the device. The device may send packets to the switch concurrently with receiving packets from the switch, thus utilizing the FC-AL in full-duplex mode. When a device opens the switch to transmit packets to the switch, the switch may determine if there are packets for the device in the queue and, if so, send packets to the device concurrently with receiving packets from the device, thus utilizing the FC-AL in full-duplex mode.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: May 8, 2007
    Assignee: Nishan Systems, Inc.
    Inventors: Rodney N. Mullendore, Stuart F. Oberman, Anil Mehta, Keith Schakel, Kamran Malik
  • Publication number: 20030056000
    Abstract: A system and method for reordering received frames to ensure that transfer ready (XFER_RDY) frames among the received frames are handled at higher priority, and thus with lower latency, than other frames. In one embodiment, an output that is connected to one or more devices may be allocated an additional queue specifically for XFER_RDY frames. Frames on this queue are given a higher priority than frames on the normal queue. XFER_RDY frames are added to the high priority queue, and other frames to the lower priority queue. XFER_RDY frames on the higher priority queue are forwarded before frames on the lower priority queue. In another embodiment, a single queue may be used to implement XFER_RDY reordering. In this embodiment, XFER_RDY frames to be inserted in front of other types of frames in the queue.
    Type: Application
    Filed: July 24, 2002
    Publication date: March 20, 2003
    Applicant: Nishan Systems, Inc.
    Inventors: Rodney N. Mullendore, Stuart F. Oberman, Anil Mehta, Keith Schakel, Kamran Malik
  • Publication number: 20030026205
    Abstract: A system and method for input thresholding packets in a network switch. A network switch may include multiple input ports, multiple output ports, and a shared random access memory coupled to the input ports and output ports by data transport logic. Packets entering the network switch may be assigned to one of a plurality of threshold groups and to one of a plurality of flows within the threshold group. In one embodiment, each threshold group may be divided into a plurality of levels of operation. As resources are allocated or freed by the threshold group, the threshold group may dynamically move up or down in the levels of operation. Within each level, one or more different values may be used as level boundaries and resource limits for flows within the threshold group. In one embodiment, programmable registers may be used to store these values.
    Type: Application
    Filed: May 13, 2002
    Publication date: February 6, 2003
    Inventors: Rodney N. Mullendore, Stuart F. Oberman, Anil Mehta, Keith Schakel, Kamran Malik
  • Publication number: 20030028663
    Abstract: A system and method for converting low-jitter, interleaved frame traffic, such as that generated in an IP network, to high jitter traffic to improve the utilization of bandwidth on arbitrated loops such as Fibre Channel Arbitrated Loops. Embodiments of a high jitter scheduling algorithm may be used in devices such as network switches that interface an arbitrated loop with an IP network that carries low-jitter traffic. The high jitter algorithm may use a separate queue for each device on the arbitrated loop, or alternatively may use one queue for two or more devices. Incoming frames are distributed among the queues based upon each frame's destination device. The scheduling algorithm may then service the queues and forward queued frames to the devices from the queues. In one embodiment, the queues are serviced in a round-robin fashion. In one embodiment, each queue may be serviced for a programmed limit.
    Type: Application
    Filed: May 22, 2002
    Publication date: February 6, 2003
    Inventors: Rodney N. Mullendore, Stuart F. Oberman, Anil Mehta, Keith Schakel, Kamran Malik
  • Publication number: 20030026287
    Abstract: A system and method for managing the allocation of Time Division Multiplexing (TDM) timeslots in a network switch. The network switch may use a TDM cycle comprising multiple timeslots to manage shared resources and to schedule data ingress and egress through the ports of the current configuration, wherein each port is assigned one or more timeslots. The network switch may be reprogrammed to support one of multiple timeslot assignment schemes for one of multiple port configurations. The network switch may support configurations with varying numbers of ports, e.g. 8- and 16-port configurations. A network switch may also support configurations where two or more ports are combined to form one port, for example, a 2 Gbs Fibre Channel port. To meet the requirements of the various configurations, the timeslot assignment scheme may be reprogrammed to meet the scheduling requirements of each of the possible port configurations.
    Type: Application
    Filed: July 31, 2002
    Publication date: February 6, 2003
    Inventors: Rodney N. Mullendore, Stuart F. Oberman, Anil Mehta, Keith Schakel, Kamran Malik