Patents by Inventor Keith Schneider

Keith Schneider has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240161884
    Abstract: Systems and techniques are described herein for user identification. For instance, a technique can include receiving at least one biosignal from a sensor, the at least one biosignal indicative of a blood perfusion of a user. The technique can further include extracting at least one feature from the at least one biosignal, comparing the extracted at least one feature to at least one template feature associated with an enrolled user, determining, based on comparing the extracted at least one feature to the at least one template feature, whether the user matches the enrolled user, and outputting an indication of whether the user matches the enrolled user.
    Type: Application
    Filed: November 14, 2022
    Publication date: May 16, 2024
    Inventors: Emily Kathryn BROOKS, Collin D'SOUZA, John Keith SCHNEIDER, Alexei STOIANOV, Shounak Uday GORE, Rathin RADHAKRISHNAN NAIR
  • Publication number: 20240150469
    Abstract: Provided herein are methods of treating B7-H1-expressing tumors comprising administering an effective amount of MEDI4736 or an antigen-binding fragment thereof.
    Type: Application
    Filed: October 20, 2023
    Publication date: May 9, 2024
    Inventors: Rajest Narwal, David Fairman, Paul Robbins, Meina Liang, Amy Schneider, Carlos Chavez, Carina Herl, Min Pak, Hong Lu, Marlon Rebelatto, Keith Steele, AnnMarie Boutrin, Li Shi, SHENGYAN HONG, Brandon Higgs, Lorin Roskos
  • Publication number: 20240065631
    Abstract: In some aspects, a user device may initiate a biometric measurement operation relating to a user of the user device. The user device may monitor, using a pressure sensor of the user device, whether a pressure at an interface between a body of the user and the user device is within a range used for obtaining data for a biometric measurement. The user device may provide an indication of whether the user is to adjust the pressure based on whether the pressure is within the range. The user device may obtain the data for the biometric measurement. Numerous other aspects are described.
    Type: Application
    Filed: August 25, 2022
    Publication date: February 29, 2024
    Inventors: Emily Kathryn BROOKS, John Keith SCHNEIDER, Krishna BUSKA
  • Publication number: 20230252815
    Abstract: The described techniques support a sensing scheme for electromagnetic excitation in ultrasonic imaging sensors. A biological tissue may be sensed and imaged using an electromagnetic excitation process to generate ultrasonic waves, such as, within the tissue. A component of a device may generate one or more pulses of electromagnetic waves, which may encounter and enter the biological tissue. The electromagnetic waves may excite the biological tissue and generate ultrasonic waves via expansion and contraction of the tissue upon heating. The ultrasonic waves may propagate within the biological tissue and may be sensed by an ultrasonic receiver array. The ultrasonic waves may be converted to pixel image data of a biometric image and may be used for biometric authentication. This process may be repeated to reconstruct an image of the finger at multiple plane slices of the finger.
    Type: Application
    Filed: April 17, 2023
    Publication date: August 10, 2023
    Inventors: Jack Conway Kitchens, John Keith Schneider, Evan Michael Breloff, Emily Kathryn Brooks, Stephen Michael Gojevic, James Anthony Miranto, Alexei Stoianov, Fitzgerald John Archibald
  • Publication number: 20220175258
    Abstract: Some disclosed methods involve controlling, via a control system, a light source system to emit a plurality of light pulses into biological tissue at a pulse repetition frequency, the biological tissue including blood and blood vessels at depths within the biological tissue. Such methods may involve receiving, by the control system, signals from the piezoelectric receiver corresponding to acoustic waves emitted from portions of the biological tissue, the acoustic waves corresponding to photoacoustic emissions from the blood and the blood vessels caused by the plurality of light pulses. Such methods may involve detecting, by the control system, heart rate waveforms in the signals, determining, by the control system, a first subset of detected heart rate waveforms corresponding to vein heart rate waveforms and determining, by the control system, a second subset of detected heart rate waveforms corresponding to artery heart rate waveforms.
    Type: Application
    Filed: December 7, 2020
    Publication date: June 9, 2022
    Inventors: Jack Conway KITCHENS, John Keith SCHNEIDER, Evan Michael BRELOFF, Emily Kathryn BROOKS, Stephen Michael GOJEVIC, Fitzgerald JOHN ARCHIBALD, Alexei STOIANOV, Shounak Uday GORE, Nicholas Ian BUCHAN
  • Patent number: 11346930
    Abstract: An object having an outer surface (e.g. a friction-ridge surface of a finger) and internal parts (e.g. tissue layer, papillae, blood vessels, fat, muscle, nail and bone) is scanned by a system having a transmitter, receiver and computer. One such system has a substantially planar piezoelectric transmit-layer, an ultrasonic receiver array having a plurality of receivers, and a platen. The transmit layer is caused to produce an ultrasound plane-wave traveling toward the object residing on the platen. Using the ultrasonic receiver, ultrasonic energy that has been reflected from the object is detected. The detected ultrasonic energy is analyzed to provide an analysis result, and the analysis result is compared to a template. A determination is made as to whether the analysis result and the template are similar, and the object is declared to be alive if the analysis result is determined to be similar to the template.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: May 31, 2022
    Assignee: QUALCOMM Incorporated
    Inventors: Jack Conway Kitchens, II, John Keith Schneider, Stephen Michael Gojevic, Timothy Dickinson, Philip John Schneider, Evan Breloff, Evan Robert Hildreth
  • Patent number: 11306829
    Abstract: A low pressure, low operating force valve, for applications where automated valves are used, having reduced power requirements for an associated actuator. A low torque ball valve of a fixed ball valve configuration for low to medium pressure applications, such as for an electric motor actuated residential shutoff valve where pressures are typically below 100 psi, and commonly less than 60 psi, for example. The valve can be open or shut using a smaller electric motor than would be required for a conventional residential floating ball shutoff valve of a similar size. As such, the power requirements of the electric motor or other actuator are reduced allowing for the use of smaller motors, smaller power supplies and overall more efficient operation.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: April 19, 2022
    Assignee: LeakSmart Inc.
    Inventors: John C. Holzheimer, Keith Schneider
  • Patent number: 11246407
    Abstract: A modular portable table usable as a temporary table or support structure includes a tabletop, one or more leg assemblies, and an anchor assembly for securing the table to a substrate, the one or more leg assemblies positioned between the tabletop and the anchor assembly.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: February 15, 2022
    Inventor: Fredericus (Fritz) Keith Schneider
  • Patent number: 11087108
    Abstract: An apparatus may include a cover layer, a layer of first metamaterial proximate (or in) the cover layer, a light source system configured for providing light to the layer of first metamaterial and a receiver system. The first metamaterial may include nanoparticles configured to create ultrasonic waves when illuminated by light. The receiver system may include an ultrasonic receiver system configured to receive ultrasonic waves reflected from a target object in contact with, or proximate, a surface of the cover layer. The control system may be configured to receive ultrasonic receiver signals from the ultrasonic receiver system corresponding to the ultrasonic waves reflected from the target object and to perform an authentication process and/or an imaging process that is based, at least in part, on the ultrasonic receiver signals.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: August 10, 2021
    Assignee: QUALCOMM Incorporated
    Inventors: Jack Conway Kitchens, John Keith Schneider, Stephen Michael Gojevic, Evan Michael Breloff, James Anthony Miranto, Emily Kathryn Brooks, Fitzgerald John Archibald, Alexei Stoianov, Raj Kumar, Sai Praneeth Sreeram, Nirma Lnu, Sandeep Louis D'Souza, Nicholas Ian Buchan, Yipeng Lu, Chin-Jen Tseng, Hrishikesh Vijaykumar Panchawagh
  • Patent number: 11020057
    Abstract: An ultrasound cardiovascular measuring device may include an ultrasonic sensor system having an ultrasound transmitter layer configured to generate ultrasonic plane waves and a focusing layer that includes one or more lenses. One or more of the lenses may be configured to generate output signals corresponding to detected ultrasonic reflections. The measuring device may include a control system capable of processing the output signals to calculate values corresponding to one or more cardiovascular properties.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: June 1, 2021
    Assignee: QUALCOMM Incorporated
    Inventors: David Boettcher Baek, Philip John Schneider, Lars Lading, Aiman Abdel-Malek, John Keith Schneider
  • Publication number: 20210158002
    Abstract: An apparatus may include a cover layer, a layer of first metamaterial proximate (or in) the cover layer, a light source system configured for providing light to the layer of first metamaterial and a receiver system. The first metamaterial may include nanoparticles configured to create ultrasonic waves when illuminated by light. The receiver system may include an ultrasonic receiver system configured to receive ultrasonic waves reflected from a target object in contact with, or proximate, a surface of the cover layer. The control system may be configured to receive ultrasonic receiver signals from the ultrasonic receiver system corresponding to the ultrasonic waves reflected from the target object and to perform an authentication process and/or an imaging process that is based, at least in part, on the ultrasonic receiver signals.
    Type: Application
    Filed: November 21, 2019
    Publication date: May 27, 2021
    Inventors: Jack Conway Kitchens, John Keith Schneider, Stephen Michael Gojevic, Evan Michael Breloff, James Anthony Miranto, Emily Kathryn Brooks, Fitzgerald John Archibald, Alexei Stoianov, Raj Kumar, Sai Praneeth Sreeram, Nirma Lnu, Sandeep Louis D'Souza, Nicholas Ian Buchan, Yipeng Lu, Chin-Jen Tseng, Hrishikesh Vijaykumar Panchawagh
  • Patent number: 11017195
    Abstract: The described techniques support a sensing scheme for electromagnetic excitation in ultrasonic imaging sensors. A biological tissue may be sensed and imaged using an electromagnetic excitation process to generate ultrasonic waves, such as, within the tissue. A component of a device may generate one or more pulses of electromagnetic waves, which may encounter and enter the biological tissue. In some examples, the component may be a display interface or may be different from a display interface of the device. The electromagnetic waves may excite the biological tissue and generate ultrasonic waves via expansion and contraction of the tissue upon heating. The ultrasonic waves may propagate within the biological tissue and may be sensed by an ultrasonic receiver array. The sensed ultrasonic waves may be converted to pixel image data of a biometric image and may be used for biometric authentication.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: May 25, 2021
    Assignee: QUALCOMM Incorporated
    Inventors: Jack Conway Kitchens, John Keith Schneider, Stephen Michael Gojevic, Evan Michael Breloff, Emily Kathryn Brooks, Alexei Stoianov, Fitzgerald John Archibald, James Anthony Miranto
  • Patent number: 11017251
    Abstract: An apparatus may include an ultrasonic sensor array and a control system. The control system may be configured to acquire first image data generated by the ultrasonic sensor array corresponding to at least one first reflected ultrasonic wave received by at least a portion of the ultrasonic sensor array from a target object during a first acquisition time window. The control system may be configured to acquire second image data generated by the ultrasonic sensor array corresponding to at least one second reflected ultrasonic wave received by at least a portion of the ultrasonic sensor array from the target object during a second acquisition time window that is longer than the first acquisition time window. The control system may further be configured to initiate an authentication process based on the first image data and the second image data.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: May 25, 2021
    Assignee: QUALCOMM Incorporated
    Inventors: Jack Conway Kitchens, II, John Keith Schneider, Stephen Michael Gojevic, Philip John Schneider, Evan Michael Breloff, Ashish Hinger, David William Burns, Muhammed Ibrahim Sezan
  • Publication number: 20210116038
    Abstract: A low pressure, low operating force valve, for applications where automated valves are used, having reduced power requirements for an associated actuator. A low torque ball valve of a fixed ball valve configuration for low to medium pressure applications, such as for an electric motor actuated residential shutoff valve where pressures are typically below 100 psi, and commonly less than 60 psi, for example. The valve can be open or shut using a smaller electric motor than would be required for a conventional residential floating ball shutoff valve of a similar size. As such, the power requirements of the electric motor or other actuator are reduced allowing for the use of smaller motors, smaller power supplies and overall more efficient operation.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 22, 2021
    Applicant: LEAKSMART INC.
    Inventors: John C. Holzheimer, Keith Schneider
  • Publication number: 20210037965
    Abstract: A modular portable table is disclosed which can be utilized as a temporary table or support structure. The table includes a tabletop, one or more leg assemblies, and an anchor assembly for securing the table to a substrate, the one or more leg assemblies positioned between the tabletop and the anchor assembly.
    Type: Application
    Filed: October 26, 2020
    Publication date: February 11, 2021
    Inventor: Fredericus (Fritz) Keith Schneider
  • Patent number: 10891506
    Abstract: A subdermal imaging system which may determine whether a person's body is in contact with a display, and perform a subdermal imaging process to determine subdermal characteristics by a photoacoustic imaging process. Ultrasonic emissions emitted from the photoacoustic process may be received with an ultrasonic receiver array. The subdermal imaging system may adjust the wavelength and/or intensity of the photoacoustic process in order to image desired subdermal features.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: January 12, 2021
    Assignee: QUALCOMM Incorporated
    Inventors: Jack Conway Kitchens, John Keith Schneider, Stephen Michael Gojevic, Evan Michael Breloff
  • Publication number: 20200410189
    Abstract: The described techniques support a sensing scheme for electromagnetic excitation in ultrasonic imaging sensors. A biological tissue may be sensed and imaged using an electromagnetic excitation process to generate ultrasonic waves, such as, within the tissue. A component of a device may generate one or more pulses of electromagnetic waves, which may encounter and enter the biological tissue. The electromagnetic waves may excite the biological tissue and generate ultrasonic waves via expansion and contraction of the tissue upon heating. The ultrasonic waves may propagate within the biological tissue and may be sensed by an ultrasonic receiver array. The ultrasonic waves may be converted to pixel image data of a biometric image and may be used for biometric authentication. This process may be repeated to reconstruct an image of the finger at multiple plane slices of the finger.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Inventors: Jack Conway Kitchens, John Keith Schneider, Evan Michael Breloff, Emily Kathryn Brooks, Stephen Michael Gojevic, James Anthony Miranto, Alexei Stoianov, Fitzgerald John Archibald
  • Publication number: 20200410190
    Abstract: The described techniques support a sensing scheme for electromagnetic excitation in ultrasonic imaging sensors. A biological tissue may be sensed and imaged using an electromagnetic excitation process to generate ultrasonic waves, such as, within the tissue. A component of a device may generate one or more pulses of electromagnetic waves, which may encounter and enter the biological tissue. In some examples, the component may be a display interface or may be different from a display interface of the device. The electromagnetic waves may excite the biological tissue and generate ultrasonic waves via expansion and contraction of the tissue upon heating. The ultrasonic waves may propagate within the biological tissue and may be sensed by an ultrasonic receiver array. The sensed ultrasonic waves may be converted to pixel image data of a biometric image and may be used for biometric authentication.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Inventors: Jack Conway Kitchens, John Keith Schneider, Stephen Michael Gojevic, Evan Michael Breloff, Emily Kathryn Brooks, Alexei Stoianov, Fitzgerald John Archibald, James Anthony Miranto
  • Patent number: 10835034
    Abstract: A modular portable table includes a tabletop, one or more leg assemblies, and an anchor assembly for securing the table to a substrate, the one or more leg assemblies positioned between the tabletop and the anchor assembly.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: November 17, 2020
    Inventor: Fredericus (Fritz) Keith Schneider
  • Patent number: 10706306
    Abstract: An apparatus may include an ultrasonic sensor system and a control system. The control system may be configured to distinguish, according to image data acquired via an ultrasonic sensor system, the pyroelectric effect caused by an actual human finger from the pyroelectric effect caused by a sleeve-type spoof or a “fake finger” spoof. Some such examples involve obtaining multiple frames of ultrasonic image data of a target object on or near a platen of an ultrasonic sensor system via the ultrasonic sensor system and determining at least one target object pyroelectric indication based, at least in part, on the multiple frames of ultrasonic image data.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: July 7, 2020
    Assignee: QUALCOMM Incorporated
    Inventors: Jack Conway Kitchens, John Keith Schneider, Evan Michael Breloff, Stephen Michael Gojevic