Patents by Inventor Keith Victorine

Keith Victorine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11045643
    Abstract: Methods and devices include making an incision at a single site of a patient. The single site located at an anterior of a chest or abdomen. The method also includes inserting a tunneling tool through the incision at the single site and preparing a first tunnel to a subcutaneous posterior location. A path of the first tunnel at least one of i) extends over a plurality of Intercostal gaps of the chest or ii) extends along and within one of the intercostal gaps. The method also includes positioning a first lead having an electrode within the first tunnel and preparing a second tunnel to a subcutaneous parasternal location along the chest. The method also includes positioning a second lead having an electrode within the second tunnel and positioning a pulse generator within a subcutaneous pocket and operatively coupling the first and second leads to the pulse generator.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: June 29, 2021
    Assignee: Pacesetter, Inc.
    Inventors: Avi Fischer, Xiaoyi Min, Kyungmoo Ryu, Gene A. Bornzin, Keith Victorine, Stuart Rosenberg, Shubha Asopa
  • Publication number: 20210031028
    Abstract: Disclosed herein is a screw-in lead implantable in the pericardium of a patient heart and a system for delivering such leads to an implantation location. The leads include a helical tip electrode and a curvate body including a defibrillator coil with improved contact between the defibrillator coil and the patient heart. The delivery system includes a delivery catheter and lead receiving sheath disposed within the catheter. A fixation tine is disposed on one of the delivery catheter and the lead receiving sheath such that the delivery system may be anchored into the pericardium during fixation of the screw-in lead. In certain implementations, an implantable sleeve receives the leads to bias the defibrillator coil against the patient heart.
    Type: Application
    Filed: October 13, 2020
    Publication date: February 4, 2021
    Inventors: Gene A. Bornzin, Devan Hughes, Keith Victorine, Zoltan Somogyi, Matthew Nojoomi, Ekaterina Tkatchouk, Xiaoyi Min
  • Publication number: 20200360688
    Abstract: A subcutaneous implantable medical device and method (SIMD) provided. A pulse generator (PG) is configured to be positioned subcutaneously within a lateral region of a chest of a patient. The PG has a housing that includes a PG electrode. The PG has an electronics module. An elongated lead is electrically coupled to the pulse generator. The elongated lead includes a first electrode that is configured to be positioned along a first parasternal region proximate a sternum of the patient and a second electrode that is configured to be positioned at an anterior region of the patient. The first and second electrodes are coupled to be electrically common with one another. The electronics module is configured to provide electrical shocks for antiarrhythmic therapy along at least one shocking vector between the PG electrode and the first and second electrodes.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Inventors: Xiaoyi Min, Kyungmoo Ryu, Keith Victorine, Stuart Rosenberg, Gene A. Bornzin
  • Patent number: 10835741
    Abstract: Disclosed herein is a screw-in lead implantable in the pericardium of a patient heart and a system for delivering such leads to an implantation location. The leads include a helical tip electrode and a curate body including a defibrillator coil with improved contact between the defibrillator coil and the patient heart. The delivery system includes a delivery catheter and lead receiving sheath disposed within the catheter. A fixation tine is disposed on one of the delivery catheter and the lead receiving sheath such that the delivery system may be anchored into the pericardium during fixation of the screw-in lead. In certain implementations, an implantable sleeve receives the leads to bias the defibrillator coil against the patient heart.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: November 17, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Gene A. Bornzin, Devan Hughes, Keith Victorine, Zoltan Somogyi, Matthew Nojoomi, Ekaterina Tkatchouk, Xiaoyi Min
  • Publication number: 20200289835
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including coaxial fixation elements to engage or electrically stimulate tissue, is described. The coaxial fixation elements include an outer fixation element extending along a longitudinal axis and an inner fixation element radially inward from the outer fixation element. One or more of the fixation elements are helical fixation elements that can be screwed into tissue. The outer fixation element has a distal tip that is distal to a distal tip of the inner fixation element, and an axial stiffness of the outer fixation element is lower than an axial stiffness of the inner fixation element. The relative stiffnesses are based on one or more of material or geometric characteristics of the respective fixation elements. Other embodiments are also described and claimed.
    Type: Application
    Filed: February 13, 2020
    Publication date: September 17, 2020
    Inventors: Thomas B. EBY, Tyler J. STRANG, Keith VICTORINE, Wesley ALLEMAN
  • Patent number: 10765860
    Abstract: A subcutaneous implantable medical device and method (SIMD) provided. A pulse generator (PG) is configured to be positioned subcutaneously within a lateral region of a chest of a patient. The PG has a housing that includes a PG electrode. The PG has an electronics module. An elongated lead is electrically coupled to the pulse generator. The elongated lead includes a first electrode that is configured to be positioned along a first parasternal region proximate a sternum of the patient and a second electrode that is configured to be positioned at an anterior region of the patient. The first and second electrodes are coupled to be electrically common with one another. The electronics module is configured to provide electrical shocks for antiarrhythmic therapy along at least one shocking vector between the PG electrode and the first and second electrodes.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: September 8, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Kyungmoo Ryu, Keith Victorine, Stuart Rosenberg, Gene A. Bornzin
  • Publication number: 20190336753
    Abstract: A subcutaneous implantable medical device and method (SIMD) provided. A pulse generator (PG) is configured to be positioned subcutaneously within a lateral region of a chest of a patient. The PG has a housing that includes a PG electrode. The PG has an electronics module. An elongated lead is electrically coupled to the pulse generator. The elongated lead includes a first electrode that is configured to be positioned along a first parasternal region proximate a sternum of the patient and a second electrode that is configured to be positioned at an anterior region of the patient. The first and second electrodes are coupled to be electrically common with one another. The electronics module is configured to provide electrical shocks for antiarrhythmic therapy along at least one shocking vector between the PG electrode and the first and second electrodes.
    Type: Application
    Filed: May 7, 2018
    Publication date: November 7, 2019
    Applicant: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Kyungmoo Ryu, Keith Victorine, Stuart Rosenberg, Gene A. Bornzin
  • Publication number: 20190336747
    Abstract: Methods and devices include making an incision at a single site of a patient. The single site located at an anterior of a chest or abdomen. The method also includes inserting a tunneling tool through the incision at the single site and preparing a first tunnel to a subcutaneous posterior location. A path of the first tunnel at least one of i) extends over a plurality of Intercostal gaps of the chest or ii) extends along and within one of the intercostal gaps. The method also includes positioning a first lead having an electrode within the first tunnel and preparing a second tunnel to a subcutaneous parasternal location along the chest. The method also includes positioning a second lead having an electrode within the second tunnel and positioning a pulse generator within a subcutaneous pocket and operatively coupling the first and second leads to the pulse generator.
    Type: Application
    Filed: May 7, 2018
    Publication date: November 7, 2019
    Applicant: Pacesetter, Inc.
    Inventors: Avi Fischer, Xiaoyi Min, Kyungmoo Ryu, Gene A. Bornzin, Keith Victorine, Stuart Rosenberg, Shubha Asopa
  • Publication number: 20190298991
    Abstract: Disclosed herein is a screw-in lead implantable in the pericardium of a patient heart and a system for delivering such leads to an implantation location. The leads include a helical tip electrode and a curate body including a defibrillator coil with improved contact between the defibrillator coil and the patient heart. The delivery system includes a delivery catheter and lead receiving sheath disposed within the catheter. A fixation tine is disposed on one of the delivery catheter and the lead receiving sheath such that the delivery system may be anchored into the pericardium during fixation of the screw-in lead. In certain implementations, an implantable sleeve receives the leads to bias the defibrillator coil against the patient heart.
    Type: Application
    Filed: March 27, 2018
    Publication date: October 3, 2019
    Inventors: Gene A. Bomzin, Devan Huges, Keith Victorine, Zoltan Somogyi, Matthew Nojoomi, Ekatterina Tkalchouk, Xiaoyl Min
  • Patent number: 10143837
    Abstract: Methods of manufacturing implantable electrotherapy leads are disclosed herein. In one embodiment, the lead is manufactured by receiving a length of lead stock, forming an opening in a jacket at an intermediate location, interrupting a selected cable conductor, connecting a crimp connector to a proximal portion of the interrupted conductor at the opening, connecting a conductive element to the crimp connector, and removing at least a segment of a distal portion of the interrupted conductor from a lead body.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: December 4, 2018
    Assignee: PACESETTER, INC.
    Inventors: Michael Childers, Keith Victorine, Steven R. Conger, Alexander Farr
  • Patent number: 10084278
    Abstract: An implantable lead assembly is provided that comprises a lead body having a proximal end portion and a distal end portion, and having a length extending there between. A plurality of electrodes are disposed along the lead body. A plurality of cable conductors are contained within the lead body, the conductors extending from the electrodes to the proximal end portion. A lead connector is provided at the proximal end portion. The lead connector includes a connector pin configured to mate with a corresponding header contact; a first termination pin coupled to one of the plurality of cable conductors; a collar coupler securely and electrically coupling the connector pin and first termination pin in an axially offset alignment with one another; and a body segment that is elongated along a longitudinal axis and extends between a header mating face and a lead mating end.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: September 25, 2018
    Assignee: PACESETTER, INC.
    Inventors: Alexander Farr, Steven R. Conger, Keith Victorine, Sean Matthew Desmond
  • Publication number: 20180229026
    Abstract: Example implantable cardiac electrotherapy leads are disclosed herein. In an example, a lead may include a plurality of cable conductors within an insulating jacket. A first one and a second one of the conductors include a proximal end at a proximal end of the jacket, the second conductor extends to at least the distal end of the jacket, and the first conductor includes a distal end at an intermediate location between the proximal end and the distal end of the jacket. The lead may also include a crimp connector connected to the first one of the cable conductors at the intermediate location, as well as a conductive element that may be connected to the crimp connector. A number of conductors along the proximal portion of the jacket may be greater than a number of conductors along at least a segment of the distal portion of the jacket.
    Type: Application
    Filed: April 11, 2018
    Publication date: August 16, 2018
    Inventors: Michael Childers, Keith Victorine, Steven R. Conger, Alexander Farr
  • Patent number: 9968776
    Abstract: Example implantable cardiac electrotherapy leads are disclosed herein. In an example, a lead may include a plurality of cable conductors within an insulating jacket. A first one and a second one of the conductors include a proximal end at a proximal end of the jacket, the second conductor extends to at least the distal end of the jacket, and the first conductor includes a distal end at an intermediate location between the proximal end and the distal end of the jacket. The lead may also include a crimp connector connected to the first one of the cable conductors at the intermediate location, as well as a conductive element that may be connected to the crimp connector. A number of conductors along the proximal portion of the jacket may be greater than a number of conductors along at least a segment of the distal portion of the jacket.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: May 15, 2018
    Assignee: PACESETTER, INC.
    Inventors: Michael Childers, Keith Victorine, Steven R. Conger, Alexander Farr
  • Publication number: 20180019562
    Abstract: An implantable lead assembly is provided that comprises a lead body having a proximal end portion and a distal end portion, and having a length extending there between. A plurality of electrodes are disposed along the lead body. A plurality of cable conductors are contained within the lead body, the conductors extending from the electrodes to the proximal end portion. A lead connector is provided at the proximal end portion. The lead connector includes a connector pin configured to mate with a corresponding header contact; a first termination pin coupled to one of the plurality of cable conductors; a collar coupler securely and electrically coupling the connector pin and first termination pin in an axially offset alignment with one another; and a body segment that is elongated along a longitudinal axis and extends between a header mating face and a lead mating end.
    Type: Application
    Filed: September 26, 2017
    Publication date: January 18, 2018
    Inventors: Alexander Farr, Steven R. Conger, Keith Victorine, Sean Matthew Desmond
  • Patent number: 9800010
    Abstract: An implantable lead assembly is provided that comprises a lead body having a proximal end portion and a distal end portion, and having a length extending there between. A plurality of electrodes are disposed along the lead body. A plurality of cable conductors are contained within the lead body, the conductors extending from the electrodes to the proximal end portion. A lead connector is provided at the proximal end portion. The lead connector includes a connector pin configured to mate with a corresponding header contact; a first termination pin coupled to one of the plurality of cable conductors; a collar coupler securely and electrically coupling the connector pin and first termination pin in an axially offset alignment with one another; and a body segment that is elongated along a longitudinal axis and extends between a header mating face and a lead mating end.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: October 24, 2017
    Assignee: PACESETTER, INC.
    Inventors: Alexander Farr, Steven R. Conger, Keith Victorine, Sean Matthew Desmond
  • Publication number: 20160303366
    Abstract: Example implantable cardiac electrotherapy leads are disclosed herein. In an example, a lead may include a plurality of cable conductors within an insulating jacket. A first one and a second one of the conductors include a proximal end at a proximal end of the jacket, the second conductor extends to at least the distal end of the jacket, and the first conductor includes a distal end at an intermediate location between the proximal end and the distal end of the jacket. The lead may also include a crimp connector connected to the first one of the cable conductors at the intermediate location, as well as a conductive element that may be connected to the crimp connector. A number of conductors along the proximal portion of the jacket may be greater than a number of conductors along at least a segment of the distal portion of the jacket.
    Type: Application
    Filed: April 20, 2015
    Publication date: October 20, 2016
    Inventors: Michael Childers, Keith Victorine, Steven R. Conger, Alexander Farr
  • Publication number: 20160296749
    Abstract: An implantable lead assembly is provided that comprises a lead body having a proximal end portion and a distal end portion, and having a length extending there between. A plurality of electrodes are disposed along the lead body. A plurality of cable conductors are contained within the lead body, the conductors extending from the electrodes to the proximal end portion. A lead connector is provided at the proximal end portion. The lead connector includes a connector pin configured to mate with a corresponding header contact; a first termination pin coupled to one of the plurality of cable conductors; a collar coupler securely and electrically coupling the connector pin and first termination pin in an axially offset alignment with one another; and a body segment that is elongated along a longitudinal axis and extends between a header mating face and a lead mating end.
    Type: Application
    Filed: April 8, 2015
    Publication date: October 13, 2016
    Inventors: Alexander Farr, Steven R. Conger, Keith Victorine, Sean Matthew Desmond
  • Patent number: 9333336
    Abstract: A method of manufacturing an implantable medical lead is disclosed herein. The method may include: providing a lead body including a proximal end, a distal end, and an electrode near the distal end; provide a conductor extending between the proximal and distal ends; providing a crimp including a ribbon-like member and extending the ribbon-like member around the conductor; and mechanically and electrically connecting the ribbon-like member to the electrode.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: May 10, 2016
    Assignee: PACESETTER, INC.
    Inventors: Keith Victorine, Steven R. Conger, Greg Kampa, Dorab N. Sethna, Daniel Ephraim, Sean Matthew Desmond
  • Publication number: 20160059001
    Abstract: An implantable medical lead may include a longitudinally extending body, an electrical conductor, an electrical component, and a weld. The longitudinally extending body includes a distal end and a proximal end. The electrical conductor extends through the body between the proximal end and the distal end. The electrical component is on the body and includes a sacrificial feature defined in a wall of the electrical component. The sacrificial feature includes a region that continues from the wall of the electrical component and a side that is isolated from the wall of the electrical component via a void defined in the wall of the electrical component. The weld is formed at least in part from at least a portion of the sacrificial feature. The weld operably couples the electrical component to the electrical conductor.
    Type: Application
    Filed: November 6, 2015
    Publication date: March 3, 2016
    Inventors: Keith Victorine, Sergey Safarevich, Steven R. Conger, Serdar Unal, Sean Matthew Desmond
  • Patent number: 9162047
    Abstract: A method of manufacturing an implantable medical lead is disclosed herein. The method may include: providing a lead body including a proximal end, a distal end, and an electrode near the distal end; provide a conductor extending between the proximal and distal ends; providing a crimp including a ribbon-like member and extending the ribbon-like member around the conductor; and mechanically and electrically connecting the ribbon-like member to the electrode.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: October 20, 2015
    Assignee: PACESETTER, INC.
    Inventors: Keith Victorine, Steven R. Conger, Greg Kampa, Dorab N. Sethna, Daniel Ephraim, Sean Matthew Desmond