Patents by Inventor Keith William Johnson

Keith William Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11969286
    Abstract: A system for visualization and quantification of ultrasound imaging data according to embodiments of the present disclosure may include a display unit, and a processor communicatively coupled to the display unit and to an ultrasound imaging apparatus for generating an image from ultrasound data representative of a bodily structure and fluid flowing within the bodily structure. The processor may be configured to estimate axial and lateral velocity components of the fluid flowing within the bodily structure, determine a plurality of flow directions within the image based on the axial and lateral velocity components, differentially encode the flow directions based on flow direction angle to generate a flow direction map, and cause the display unit to concurrently display the image including the bodily structure overlaid with the flow direction map.
    Type: Grant
    Filed: November 22, 2022
    Date of Patent: April 30, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Hua Xie, Shiying Wang, Sheng-Wen Huang, Francois Guy Gerard Marie Vignon, Keith William Johnson, Liang Zhang, David Hope Simpson
  • Patent number: 11965959
    Abstract: The present disclosure describes ultrasound systems configured to enhance flow imaging and analysis by adaptively adjusting one or more imaging parameters in response to acquired flow measurements. Example systems can include an ultrasound transducer and one or more processors. Using the system components, mean flow velocity magnitude and acceleration can be determined within a target region during an acquisition phase, which may include a cardiac cycle. One or more adjusted flow imaging parameters, such as adjusted ensemble length, temporal smoothing filter length and/or step size, can be determined based on the acquired flow measurements to increase the signal quality of newly acquired ultrasound echo signals. The adjusted flow imaging parameters can then be applied by the ultrasound transducer during a second acquisition phase.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: April 23, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Shiying Wang, Sheng-Wen Huang, Hua Xie, Keith William Johnson, Liang Zhang, Thanasis Loupas, Truong Huy Nguyen
  • Patent number: 11916358
    Abstract: In one or more embodiments, a power distribution unit may include: multiple power distribution module (PDM) receptacles, in which each PDM receptacle is configured to receive a PDM along a longitudinal axis of the PDM receptacle and is configured with multiple conductors disposed along a plane orthogonal to the longitudinal axis; first multiple power outlets coupled to a first PDM receptacle of the multiple PDM receptacles, in which the first multiple power outlets are configured to provide first single-phase power to first multiple information handling systems housed by a rack; and second multiple power outlets coupled to a second PDM receptacle of the multiple PDM receptacles, in which the second multiple power outlets are configured to provide second single-phase power to second multiple information handling systems housed by the rack. In one or more embodiments, a monitoring device of the power distribution unit may monitor one or more environmental attributes.
    Type: Grant
    Filed: June 3, 2022
    Date of Patent: February 27, 2024
    Assignee: Dell Products L.P.
    Inventors: Francis William French, Kanu Dhiru Patel, Keith Clifford Johnson
  • Publication number: 20230329669
    Abstract: A system for visualization and quantification of ultrasound imaging data may include a display unit, and a processor communicatively coupled to the display unit and to an ultrasound imaging apparatus for generating an image from ultrasound data representative of a bodily structure and fluid flowing within the bodily structure. The processor may be configured to generate vector field data corresponding to the fluid flow, wherein the vector field data comprises axial and lateral velocity components of the fluid, extract spatiotemporal information from the vector field data at one or more user-selected points within the image, and cause the display unit to concurrently display the spatiotemporal information at the one or more user-selected points with the image including a graphical representation of the vector field data overlaid on the image, wherein the spatiotemporal information includes at least one of a magnitude and an angle of the fluid flow.
    Type: Application
    Filed: June 1, 2023
    Publication date: October 19, 2023
    Inventors: Shiying Wang, Sheng-Wen Huang, Hua Xie, Francois Guy Gerard Marie Vignon, Liang Zhang, Keith William Johnson
  • Patent number: 11701081
    Abstract: A system for visualization and quantification of ultrasound imaging data may include a display unit, and a processor communicatively coupled to the display unit and to an ultrasound imaging apparatus for generating an image from ultrasound data representative of a bodily structure and fluid flowing within the bodily structure. The processor may be configured to generate vector field data corresponding to the fluid flow, wherein the vector field data comprises axial and lateral velocity components of the fluid, extract spatiotemporal information from the vector field data at one or more user-selected points within the image, and cause the display unit to concurrently display the spatiotemporal information at the one or more user-selected points with the image including a graphical representation of the vector field data overlaid on the image, wherein the spatiotemporal information includes at least one of a magnitude and an angle of the fluid flow.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: July 18, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Shiying Wang, Sheng-Wen Huang, Hua Xie, Francois Guy Gerard Marie Vignon, Liang Zhang, Keith William Johnson
  • Publication number: 20230206066
    Abstract: Disclosed herein are system, method, and computer program embodiments for an improved spiking neural network (SNN) configured to learn and perform unsupervised, semi-supervised, and supervised extraction of features from an input dataset. An embodiment operates by receiving a modification request to modify a base neural network, having N layers and a plurality of spiking neurons, trained using a primary training dataset. The base neural network is modified to include supplementary spiking neurons in the Nth or N + 1th layer of the base neural network. The embodiment includes receiving a secondary training dataset and determining membrane potential values of one or more supplementary spiking neurons in the Nth or Nth + 1 layer which learn features based on secondary training data set to select a supplementary/winning spiking neuron. The embodiment performs a learning function for the modified neural network based on the winning spiking neuron.
    Type: Application
    Filed: December 19, 2022
    Publication date: June 29, 2023
    Applicant: BrainChip, Inc.
    Inventors: Douglas McLELLAND, Kristofor D. CARLSON, Keith William JOHNSON, Milind JOSHI
  • Publication number: 20230085700
    Abstract: A system for visualization and quantification of ultrasound imaging data according to embodiments of the present disclosure may include a display unit, and a processor communicatively coupled to the display unit and to an ultrasound imaging apparatus for generating an image from ultrasound data representative of a bodily structure and fluid flowing within the bodily structure. The processor may be configured to estimate axial and lateral velocity components of the fluid flowing within the bodily structure, determine a plurality of flow directions within the image based on the axial and lateral velocity components, differentially encode the flow directions based on flow direction angle to generate a flow direction map, and cause the display unit to concurrently display the image including the bodily structure overlaid with the flow direction map.
    Type: Application
    Filed: November 22, 2022
    Publication date: March 23, 2023
    Inventors: Hua Xie, Shiying Wang, Sheng-Wen Huang, Francois Guy Gerard Marie Vignon, Keith William Johnson, Liang Zhang, David Hope Simpson
  • Patent number: 11534131
    Abstract: A system for visualization and quantification of ultrasound imaging data according to embodiments of the present disclosure may include a display unit, and a processor communicatively coupled to the display unit and to an ultrasound imaging apparatus for generating an image from ultrasound data representative of a bodily structure and fluid flowing within the bodily structure. The processor may be configured to estimate axial and lateral velocity components of the fluid flowing within the bodily structure, determine a plurality of flow directions within the image based on the axial and lateral velocity components, differentially encode the flow directions based on flow direction angle to generate a flow direction map, and cause the display unit to concurrently display the image including the bodily structure overlaid with the flow direction map.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: December 27, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Hua Xie, Shiying Wang, Sheng-Wen Huang, Francois Guy Gerard Marie Vignon, Keith William Johnson, Liang Zhang, David Hope Simpson
  • Patent number: 11481880
    Abstract: A method of power Doppler imaging may include receiving a plurality of temporally sequential frames of wall-filtered power Doppler signals, wherein the plurality of temporally sequential frames includes at least one previously adjusted output frame. The method may further include adjusting at least one of the plurality of temporally sequential frames to produce an adjusted output frame and generating a power Doppler image based, at least in part, on the adjusted output frame. The adjusting may involve filtering the plurality of temporally sequential frames to suppress the high spatial frequency and high temporal frequency content to produce the adjusted output frame.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: October 25, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Liang Zhang, David Hope Simpson, Keith William Johnson
  • Publication number: 20220233171
    Abstract: The present disclosure describes systems and methods for determining if a feature of interest is present in a volume or plane scanned by an imaging system. In examples, one or more imaging planes are analyzed for anatomical landmarks to determine whether a feature of interest is present. If the feature of interest is present, scan parameters may be determined to scan an adjusted volume that includes the feature of interest. In some applications, the adjusted volume may allow the imaging system to increase a volume rate.
    Type: Application
    Filed: May 5, 2020
    Publication date: July 28, 2022
    Inventors: KEITH WILLIAM JOHNSON, ANNE HOLMES
  • Patent number: 11398023
    Abstract: A system according to the present disclosure may include a display unit, a processor communicatively coupled to the display unit and to an ultrasound imaging apparatus for generating an image from ultrasound data representative of a bodily structure and fluid flowing within the bodily structure. The processor may be configured to generate vector field data including axial and lateral (or transverse) velocity components of the fluid flowing within the bodily structure, calculate velocity profiles for a plurality of locations along a wall of the bodily structure based on the axial and lateral velocity components, generate wall shear stress (WSS) visualization data based, at least in part, on the velocity profiles, and cause the display unit to concurrently display the image including the bodily structure overlaid with the WSS visualization data.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: July 26, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Shiying Wang, Sheng-Wen Huang, Hua Xie, Francois Guy Gerard Marie Vignon, Keith William Johnson, Liang Zhang
  • Patent number: 11238562
    Abstract: An ultrasound system with a deep learning neural network feature is used to eliminate haze artifacts in B mode images of the carotid artery by analysis of orthogonal information. In a described implementation the orthogonal information comprises the structural information of a B mode image and motion information of the same field of view as that of the B mode image. In another embodiment the neural network reduces haze artifacts by reducing TGC gain at the depth of artifacts.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: February 1, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Anup Agarwal, Keith William Johnson, Liang Zhang, Earl M. Canfield
  • Publication number: 20210373154
    Abstract: The present disclosure describes ultrasound systems configured to enhance flow imaging and analysis by adaptively adjusting one or more imaging parameters in response to acquired flow measurements. Example systems can include an ultrasound transducer and one or more processors. Using the system components, mean flow velocity magnitude and acceleration can be determined within a target region during an acquisition phase, which may include a cardiac cycle. One or more adjusted flow imaging parameters, such as adjusted ensemble length, temporal smoothing filter length and/or step size, can be determined based on the acquired flow measurements to increase the signal quality of newly acquired ultrasound echo signals. The adjusted flow imaging parameters can then be applied by the ultrasound transducer during a second acquisition phase.
    Type: Application
    Filed: October 14, 2019
    Publication date: December 2, 2021
    Inventors: SHIYING WANG, SHENG-WEN HUANG, HUA XIE, KEITH WILLIAM JOHNSON, LIANG ZHANG, THANASIS LOUPAS, TRUONG HUY NGUYEN
  • Publication number: 20210145399
    Abstract: A system for visualization and quantification of ultrasound imaging data according to embodiments of the present disclosure may include a display unit, and a processor communicatively coupled to the display unit and to an ultrasound imaging apparatus for generating an image from ultrasound data representative of a bodily structure and fluid flowing within the bodily structure. The processor may be configured to estimate axial and lateral velocity components of the fluid flowing within the bodily structure, determine a plurality of flow directions within the image based on the axial and lateral velocity components, differentially encode the flow directions based on flow direction angle to generate a flow direction map, and cause the display unit to concurrently display the image including the bodily structure overlaid with the flow direction map.
    Type: Application
    Filed: May 25, 2018
    Publication date: May 20, 2021
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: HUA XIE, SHIYING WANG, SHENG-WEN HUANG, FRANCOIS GUY GERARD MARIE VIGNON, KEITH WILLIAM JOHNSON, LIANG ZHANG, DAVID HOPE SIMPSON
  • Publication number: 20210106305
    Abstract: A system for visualization and quantification of ultrasound imaging data may include a display unit, and a processor communicatively coupled to the display unit and to an ultrasound imaging apparatus for generating an image from ultrasound data representative of a bodily structure and fluid flowing within the bodily structure. The processor may be configured to generate vector field data corresponding to the fluid flow, wherein the vector field data comprises axial and lateral velocity components of the fluid, extract spatiotemporal information from the vector field data at one or more user-selected points within the image, and cause the display unit to concurrently display the spatiotemporal information at the one or more user-selected points with the image including a graphical representation of the vector field data overlaid on the image, wherein the spatiotemporal information includes at least one of a magnitude and an angle of the fluid flow.
    Type: Application
    Filed: March 26, 2018
    Publication date: April 15, 2021
    Inventors: Shiying WANG, Sheng-Wen HUANG, Hua XIE, Francois Guy Gerard Marie VIGNON, Liang ZHANG, Keith William JOHNSON
  • Publication number: 20200184614
    Abstract: A method of power Doppler imaging may include receiving a plurality of temporally sequential frames of wall-filtered power Doppler signals, wherein the plurality of temporally sequential frames includes at least one previously adjusted output frame. The method may further include adjusting at least one of the plurality of temporally sequential frames to produce an adjusted output frame and generating a power Doppler image based, at least in part, on the adjusted output frame. The adjusting may involve filtering the plurality of temporally sequential frames to suppress the high spatial frequency and high temporal frequency content to produce the adjusted output frame.
    Type: Application
    Filed: April 17, 2018
    Publication date: June 11, 2020
    Inventors: LIANG ZHANG, DAVID HOPE SIMPSON, KEITH WILLIAM JOHNSON
  • Publication number: 20200175652
    Abstract: An ultrasound system with a deep learning neural network feature is used to eliminate haze artifacts in B mode images of the carotid artery by analysis of orthogonal information. In a described implementation the orthogonal information comprises the structural information of a B mode image and motion information of the same field of view as that of the B mode image. In another embodiment the neural network reduces haze artifacts by reducing TGC gain at the depth of artifacts.
    Type: Application
    Filed: August 2, 2018
    Publication date: June 4, 2020
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Anup Agarwal, Keith William Johnson, Liang Zhang, Earl M. Canfield
  • Publication number: 20200126219
    Abstract: A system according to the present disclosure may include a display unit, a processor communicatively coupled to the display unit and to an ultrasound imaging apparatus for generating an image from ultrasound data representative of a bodily structure and fluid flowing within the bodily structure. The processor may be configured to generate vector field data including axial and lateral (or transverse) velocity components of the fluid flowing within the bodily structure, calculate velocity profiles for a plurality of locations along a wall of the bodily structure based on the axial and lateral velocity components, generate wall shear stress (WSS) visualization data based, at least in part, on the velocity profiles, and cause the display unit to concurrently display the image including the bodily structure overlaid with the WSS visualization data.
    Type: Application
    Filed: May 4, 2018
    Publication date: April 23, 2020
    Inventors: SHIYING WANG, SHENG-WEN HUANG, HUA XIE, FRANCOIS GUY GERARD MARIE VIGNON, KEITH WILLIAM JOHNSON, LIANG ZHANG
  • Patent number: 10368844
    Abstract: An ultrasound system with a matrix array (500) probe (10) operable in the biplane mode is used to assess stenosis of a blood vessel by simultaneously displaying two color Doppler biplane images (60a, 60b) of the vessel, one a longitudinal cross-sectional view (60a) and the other a transverse cross-sectional view (60b). The two image planes intersect along a Doppler beam line (68) used for PW Doppler. A sample volume graphic (SV) is positioned over the blood vessel at the peak velocity location in one image, then positioned over the blood vessel at the peak velocity location in the other image. As the sample volume location is moved in one image, the plane and/or sample volume location of the other image is adjusted correspondingly. Spectral Doppler data (62) is then acquired and displayed from the sample volume location.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: August 6, 2019
    Assignee: Koninklijke Philips N.V.
    Inventors: James Robertson Jago, Keith William Johnson, Ashraf Saad, David Allen Hull
  • Publication number: 20150250453
    Abstract: An ultrasound system with a matrix array (500) probe (10) operable in the biplane mode is used to assess stenosis of a blood vessel by simultaneously displaying two color Doppler biplane images (60a, 60b) of the vessel, one a longitudinal cross-sectional view (60a) and the other a transverse cross-sectional view (60b). The two image planes intersect along a Doppler beam line (68) used for PW Doppler. A sample volume graphic (SV) is positioned over the blood vessel at the peak velocity location in one image, then positioned over the blood vessel at the peak velocity location in the other image. As the sample volume location is moved in one image, the plane and/or sample volume location of the other image is adjusted correspondingly. Spectral Doppler data (62) is then acquired and displayed from the sample volume location.
    Type: Application
    Filed: September 27, 2013
    Publication date: September 10, 2015
    Inventors: James Robertson Jago, Keith William Johnson, Ashraf Saad, David Allen Hull