Patents by Inventor Keith William Johnston

Keith William Johnston has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240072312
    Abstract: Systems, methods, and devices of the various embodiments may provide control and/or sensing circuit configurations for electrochemical energy storage systems, such as metal-air battery systems. Various embodiments may include systems, methods, and devices supporting terminal switching between a charge cathode and a discharge cathode of a metal-air battery, bypass switching for the metal-air battery, and/or electrolyte low level detection for the metal-air battery.
    Type: Application
    Filed: August 22, 2023
    Publication date: February 29, 2024
    Inventors: Tuan Minh Truong, Tyler Grandahl, Keith William Johnston, Jhalak Joshipura Vasavada, Grant Harrison Friesen
  • Publication number: 20230420957
    Abstract: Systems, methods, and devices of the various embodiments may include battery string arrangements for power systems, such as dynamic battery string configurations, inter-module connections, and other configurations.
    Type: Application
    Filed: April 24, 2023
    Publication date: December 28, 2023
    Inventors: Tyler GRANDAHL, Amelie Nina KHAREY, Nicholas MCKIBBEN, Keith William JOHNSTON
  • Patent number: 8759816
    Abstract: A composite material is described. The composite material comprises semiconductor nanocrystals, and organic molecules that passivate the surfaces of the semiconductor nanocrystals. One or more properties of the organic molecules facilitate the transfer of charge between the semiconductor nanocrystals. A semiconductor material is described that comprises p-type semiconductor material including semiconductor nanocrystals. At least one property of the semiconductor material results in a mobility of electrons in the semiconductor material being greater than or equal to a mobility of holes. A semiconductor material is described that comprises n-type semiconductor material including semiconductor nanocrystals. At least one property of the semiconductor material results in a mobility of holes in the semiconductor material being greater than or equal to a mobility of electrons.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: June 24, 2014
    Assignee: InVisage Technologies, Inc.
    Inventors: Edward Hartley Sargent, Keith William Johnston, Andras Geza Pattantyus-Abraham, Jason Paul Clifford
  • Publication number: 20120180856
    Abstract: A composite material is described. The composite material comprises semiconductor nanocrystals, and organic molecules that passivate the surfaces of the semiconductor nanocrystals. One or more properties of the organic molecules facilitate the transfer of charge between the semiconductor nanocrystals. A semiconductor material is described that comprises p-type semiconductor material including semiconductor nanocrystals. At least one property of the semiconductor material results in a mobility of electrons in the semiconductor material being greater than or equal to a mobility of holes. A semiconductor material is described that comprises n-type semiconductor material including semiconductor nanocrystals. At least one property of the semiconductor material results in a mobility of holes in the semiconductor material being greater than or equal to a mobility of electrons.
    Type: Application
    Filed: September 16, 2011
    Publication date: July 19, 2012
    Inventors: Edward Hartley Sargent, Keith William Johnston, Andras Geza Pattantyus-Abraham, Jason Paul Clifford
  • Patent number: 8022391
    Abstract: A composite material is described. The composite material comprises semiconductor nanocrystals, and organic molecules that passivate the surfaces of the semiconductor nanocrystals. One or more properties of the organic molecules facilitate the transfer of charge between the semiconductor nanocrystals. A semiconductor material is described that comprises p-type semiconductor material including semiconductor nanocrystals. At least one property of the semiconductor material results in a mobility of electrons in the semiconductor material being greater than or equal to a mobility of holes. A semiconductor material is described that comprises n-type semiconductor material including semiconductor nanocrystals. At least one property of the semiconductor material results in a mobility of holes in the semiconductor material being greater than or equal to a mobility of electrons.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: September 20, 2011
    Assignee: InVisage Technologies, Inc.
    Inventors: Edward Hartley Sargent, Ghada Koleilat, Jiang Tang, Keith William Johnston, Andras Geza Pattantyus-Abraham, Gerasimos Konstantatos, Ethan Jacob Dukenfield Klem, Stefan Myrskog, Dean Delehanty MacNeil, Jason Paul Clifford, Larissa Levina
  • Publication number: 20100044676
    Abstract: A composite material is described. The composite material comprises semiconductor nanocrystals, and organic molecules that passivate the surfaces of the semiconductor nanocrystals. One or more properties of the organic molecules facilitate the transfer of charge between the semiconductor nanocrystals. A semiconductor material is described that comprises p-type semiconductor material including semiconductor nanocrystals. At least one property of the semiconductor material results in a mobility of electrons in the semiconductor material being greater than or equal to a mobility of holes. A semiconductor material is described that comprises n-type semiconductor material including semiconductor nanocrystals. At least one property of the semiconductor material results in a mobility of holes in the semiconductor material being greater than or equal to a mobility of electrons.
    Type: Application
    Filed: April 20, 2009
    Publication date: February 25, 2010
    Applicant: InVisage Technologies, Inc.
    Inventors: Edward Hartley Sargent, Ghada Koleilat, Jiang Tang, Keith William Johnston, Andras Geza Pattantyus-Abraham, Gerasimos Konstantatos, Ethan Jacob Dukenfield Klem, Stefan Myrskog, Dean Delehanty MacNeil, Jason Paul Clifford, Larissa Levina