Patents by Inventor Kejing Gao

Kejing Gao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160102159
    Abstract: The present disclosure provides an olefin polymerization catalyst and a combined catalyst containing the same. The catalyst comprises a reaction product of a magnesium dialkoxide, a titanium compound, an electron donor compound A and an electron donor compound B, wherein the electron donor compound A is a sulfonyl compound represented by general formula I, X is a disubstituted or unsubstituted group 14 element atom, a monosubstituted or unsubstituted group 15 element atom or group 16 element atom, and the substituent is a monocyclic, polycyclic or heteroatom-containing cyclic group or an aliphatic chain; R1 and R2 are respectively hydrogen atom, halogen atom, substituted or unsubstituted alkyl, cycloalkyl, aryl, aralkyl, alkylaryl or heteroatom-containing cyclic group. The combined catalyst comprises the catalyst and an organoaluminium compound and can comprise an organosilicon compound.
    Type: Application
    Filed: October 9, 2015
    Publication date: April 14, 2016
    Inventors: Weisong Cui, Jianjun Yi, Baozuo Yin, Kejing Gao, Kefeng Wang, Kuilong Tan, Yonggang Wang, Jing Mao, Rongbo Li
  • Publication number: 20160009830
    Abstract: The present invention relates to a supported polyolefin catalyst and its preparation and application. Its main catalyst is composed of a support and a transition metal halide; the support is composed of a magnesium halide compound, a silicon halide compound, an alcohol compound having 5 carbon atoms or less, an alcohol compound having carbon atom number of 6-20 in a molar ratio of 1:(0.1 to 20):(0.1 to 5):(0.01 to 10); the molar ratio of the magnesium halide compound and the transition metal halide is 1:(0.1 to 30); during the preparation process of the main catalyst, an organic alcohol ether compound is added, the mass ratio of the magnesium halide compound and the organic alcohol ether compound is 100:(0.1 to 20); and the molar ratio of the transition metal halide in the main catalyst and the co-catalyst is 1:(30 to 500).
    Type: Application
    Filed: July 11, 2013
    Publication date: January 14, 2016
    Applicant: PETROCHINA COMPANY LIMITED
    Inventors: Jianjun YI, Jianchun LU, Qigu HUANG, Zhi LIU, Xuteng HU, Hongji LIU, Mingge ZHANG, Hongming LI, Kejing GAO, Baichun ZHU
  • Patent number: 7172988
    Abstract: A catalyst component for ethylene polymerization, including an inorganic oxide support, and at least one alkyl metal compound, at least one halide, at least one dihydrocarbyl magnesium compound, at least one difunctional compound that reacts with the dihydrocarbyl magnesium compound and at least one titanium compound, wherein the difunctional compound is a mono-, di- or multi-halogenated alcohol or phenol having from 2 to 20 carbon atoms; or a mono-, di- or multi-halogenated acyl halide having from 2 to 20 carbon atoms. Also, a process for preparing the catalyst component and use thereof.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: February 6, 2007
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry
    Inventors: Kejing Gao, Dongbing Liu, Wei Chen, Guirong Fan, Xinping Lu, Jingyan An, Ying Guan, Jun Zhang, Qinfang Zhao
  • Publication number: 20040127349
    Abstract: The invention provides a catalyst component for ethylene polymerization, comprising an inorganic oxide support, and at least one alkyl metal compound, at least one halide, at least one dihydrocarbyl magnesium compound, at least one difuntional compound that reacts with the dihydrocarbyl magnesium compound and at least one titanium compound. The invention also relates to a process for preparing the catalyst component and use thereof. The catalyst comprising the catalyst component exhibits good hydrogen response and activity balance, and that the amount of static charges carried by the catalyst solid component powders is remarkably reduced will facilitate the industrial-scale operation of polymerization.
    Type: Application
    Filed: October 15, 2003
    Publication date: July 1, 2004
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, BEIJING RESEARCH INSTITUTE OF CHEMICAL INDUSTRY
    Inventors: Kejing Gao, Dongbing Liu, Wei Chen, Guirong Fan, Xinping Lu, Jingyan An, Ying Guan, Jun Zhang, Qinfang Zhao
  • Patent number: 6642325
    Abstract: The present invention relates to a silica gel-supported catalyst component suitable for ethylene (co)polymerization, a catalyst therefrom and use of the same. The catalyst component according to the present invention is obtained by supporting the reaction product of a titanium compound, a halide promoter, a magnesium compound and an electron donor on silica gel having a larger specific surface area. When the resultant catalyst is used for ethylene polymerization, especially gas phase fluidized bed polymerization, not only the activity is substantially enhanced, but also the hydrogen response and the copolymerizability of ethylene with other alpha-olefins are improved. The catalyst is especially suitable for the fluidized bed polymerization operated in a condensed state, with high quality LLDPE resins being obtained.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: November 4, 2003
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry
    Inventors: Hekuan Luo, Ruiguo Tang, Kejing Gao, Qinfang Zhao, Jingyan An, Hua Yang, Jinsheng Huo
  • Publication number: 20020065378
    Abstract: The present invention relates to a silica gel-supported catalyst component suitable for ethylene (co)polymerization, a catalyst therefrom and use of the same. The catalyst component according to the present invention is obtained by supporting the reaction product of a titanium compound, a halide promoter, a magnesium compound and an electron donor on silica gel having a larger specific surface area. When the resultant catalyst is used for ethylene polymerization, especially gas phase fluidized bed polymerization, not only the activity is substantially enhanced, but also the hydrogen response, copolymerizability of ethylene with other alpha-olefins, and the like are improved. The catalyst is especially suitable for the fluidized bed polymerization operated in a condensed state, with high quality LLDPE resins being obtained.
    Type: Application
    Filed: August 22, 2001
    Publication date: May 30, 2002
    Applicant: CHINA PETROLEUM & CHEMICAL CORPORATION AND BEIJING RESEARCH INSTITUTE OF CHEMICAL INDUSTRY
    Inventors: Hekuan Luo, Ruiguo Tang, Kejing Gao, Qinfang Zhao, Jingyan An, Hua Yang, Jinsheng Huo