Patents by Inventor Kelcee Everette

Kelcee Everette has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230357766
    Abstract: The disclosure provides modified pegRNAs comprising one or more appended nucleotide structural motifs which increase the editing efficiency during prime editing, increase half-life in vivo, and increase lifespan in a cell. Modifications include, but are not limited to, an aptamer (e.g., prequeosim-1 riboswitch aptamer or “evopreQi-1”) or a variant thereof, a pseudoknot (the MMLV viral genome pseudoknot or “Mpknot-1”) or a variant thereof, a tRNA (e.g., the modified tRNA used by MMLV as a primer for reverse transcription) or a variant thereof, or a G-quadruplex or a variant thereof. The disclosure further provides prime editor complexes comprising the modified pegRNAs and having improved characteristics and/or performance, including stability, improved cellular lifespan, and improved editing efficiency.
    Type: Application
    Filed: September 24, 2021
    Publication date: November 9, 2023
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, James William Nelson, Peyton Barksdale Randolph, Andrew Vito Anzalone, Simon Shen, Kelcee Everette, Peter J. Chen
  • Publication number: 20230332144
    Abstract: Compositions and methods are provided herein for conducting prime editing of a target DNA molecule (e.g., a genome) that enables the incorporation of a nucleotide change and/or targeted mutagenesis. The compositions include fusion proteins comprising nucleic acid programmable DNA binding proteins (napDNAbp) and a polymerase (e.g., reverse transcriptase), which is guided to a specific DNA sequence by a modified guide RNA, named a PEgRNA. The PEgRNA has been altered (relative to a standard guide RNA) to comprise an extended portion that provides a DNA synthesis template sequence which encodes a single strand DNA flap which is synthesized by the polymerase of the fusion protein and which becomes incoporated into the target DNA molecule.
    Type: Application
    Filed: May 24, 2023
    Publication date: October 19, 2023
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, Andrew Vito Anzalone, Gregory Newby, Kelcee Everette
  • Publication number: 20230090221
    Abstract: The present disclosure provides compositions and methods for conducting prime editing of a target DNA molecule (e.g., a genome) that enables the incorporation of a nucleotide change and/or targeted mutagenesis. The nucleotide change can include a single-nucleotide change (e.g., any transition or any transversion), an insertion of one or more nucleotides, or a deletion of one or more nucleotides. More in particular, the disclosure provides fusion proteins comprising nucleic acid programmable DNA binding proteins (napDNAbp) and a polymerase (e.g., reverse transcriptase), which is guided to a specific DNA sequence by a modified guide RNA, named an PEgRNA.
    Type: Application
    Filed: May 23, 2022
    Publication date: March 23, 2023
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, Andrew Vito Anzalone, Gregory Newby, Kelcee Everette
  • Patent number: 11447770
    Abstract: Compositions and methods are provided herein for conducting prime editing of a target DNA molecule (e.g., a genome) that enables the incorporation of a nucleotide change and/or targeted mutagenesis. The compositions include fusion proteins comprising nucleic acid programmable DNA binding proteins (napDNAbp) and a polymerase (e.g., reverse transcriptase), which is guided to a specific DNA sequence by a modified guide RNA, named a PEgRNA. The PEgRNA has been altered (relative to a standard guide RNA) to comprise an extended portion that provides a DNA synthesis template sequence which encodes a single strand DNA flap which is synthesized by the polymerase of the fusion protein and which becomes incorporated into the target DNA molecule.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: September 20, 2022
    Assignees: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, Andrew Vito Anzalone, Gregory Newby, Kelcee Everette