Patents by Inventor Kelly A. Van Houten

Kelly A. Van Houten has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11577258
    Abstract: A cyclone includes a hollow cylindrical upper portion and a hollow conical lower portion having an inclined wall and a base wall. The base wall and the inclined wall are continuous contact with each other, and the inclined wall of the hollow conical lower portion is in continuous contact with an outer wall of the hollow cylindrical upper portion. A total cyclone height is from about 10 to about 30 millimeters, and a ratio of the total cyclone height to an inner diameter of the hollow cylindrical upper portion is from about 0.7 to about 1.3. An angle between an inner surface of the base wall and an inner surface of the inclined wall is from about 110 to about 130 degrees.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: February 14, 2023
    Assignee: The Johns Hopkins University
    Inventors: Brian E. Damit, Plamen A. Demirev, Elizabeth C. Corson, Felix C. Sage, Benjamin B. Alvarez, Charles A. Fancher, Kelly A. Van Houten, Christopher J. Rosenker
  • Publication number: 20210316318
    Abstract: A cyclone includes a hollow cylindrical upper portion and a hollow conical lower portion having an inclined wall and a base wall. The base wall and the inclined wall are continuous contact with each other, and the inclined wall of the hollow conical lower portion is in continuous contact with an outer wall of the hollow cylindrical upper portion. A total cyclone height is from about 10 to about 30 millimeters, and a ratio of the total cyclone height to an inner diameter of the hollow cylindrical upper portion is from about 0.7 to about 1.3. An angle between an inner surface of the base wall and an inner surface of the inclined wall is from about 110 to about 130 degrees.
    Type: Application
    Filed: September 1, 2020
    Publication date: October 14, 2021
    Inventors: Brian E. Damit, Plamen A. Demirev, Elizabeth C. Corson, Felix C. Sage, Benjamin B. Alvarez, Charles A. Fancher, Kelly A. Van Houten, Christopher J. Rosenker
  • Publication number: 20200249172
    Abstract: Provided is an article for detecting organic amines, wherein the article includes a solid support impregnated with an indicator reagent comprising a metal-organic framework structure. Also provided is a method of detecting organic amines, wherein the method includes the step of exposing an article comprising a solid support impregnated with an indicator reagent to a medium including an organic amine to produce a color change, wherein the indicator reagent includes a metal-organic framework structure.
    Type: Application
    Filed: August 30, 2019
    Publication date: August 6, 2020
    Inventors: James K. Johnson, Kelly A. Van Houten
  • Patent number: 8591842
    Abstract: A molecularly imprinted polymer ion exchange resin for selectively removing one or more inorganic ions in a liquid medium is disclosed and described. The exchange resin can include a bead having a porous structure and comprising a cross-linked molecularly imprinted polymer having molecular sized cavities adapted to selectively receive and bind a specific inorganic ion in a liquid medium. A process for preparing a molecularly imprinted polymer ion exchange resin can include (a) polymerizing a polmerizable mixture in the presence of an inorganic ion imprinting complex to form a bead, said inorganic ion imprinting complex including a ligand and an inorganic ion; and (b) removing the inorganic ions from the bead to form the molecularly imprinted polymer ion exchange resin, the bead having a porous structure and comprising a cross-linked molecularly imprinted polymer having molecular sized cavities adapted to selectively receive and bind a specific inorganic ion in an liquid medium.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: November 26, 2013
    Assignee: The Johns Hopkins University
    Inventors: George M. Murray, Kelly A. Van Houten, Glen E. Southard
  • Publication number: 20120184044
    Abstract: A molecularly-imprinted polymeric material that selectively binds with an explosive compound. The molecularly-imprinted polymeric material comprises a cross-linked, water-soluble polymer having basic functional groups and a binding site capable of selectively binding an explosive compound. The basic functional groups have a pKa that is sufficiently high to react with the explosive compound to result in a visually detectable color change. For example, the basic functional groups may have a pKa in the range of 6.0-9.0. The molecularly-imprinted polymeric material may be used in a variety of applications, such as a projectile for detecting explosives. Also described is a method for making a molecularly-imprinted polymeric material.
    Type: Application
    Filed: December 30, 2009
    Publication date: July 19, 2012
    Applicant: RAPTOR DETECTION, INC.
    Inventors: Aristotle G. KALIVRETENOS, Kelly A. VAN HOUTEN, Jonathan P. GLUCKMAN, Frank M. HARDY, Igor P. DOROVSKOY, Robert TROWER
  • Publication number: 20120012530
    Abstract: A molecularly imprinted polymer ion exchange resin for selectively removing one or more inorganic ions in a liquid medium is disclosed and described. The exchange resin can include a bead having a porous structure and comprising a cross-linked molecularly imprinted polymer having molecular sized cavities adapted to selectively receive and bind a specific inorganic ion in a liquid medium. A process for preparing a molecularly imprinted polymer ion exchange resin can include (a) polymerizing a polmerizable mixture in the presence of an inorganic ion imprinting complex to form a bead, said inorganic ion imprinting complex including a ligand and an inorganic ion; and (b) removing the inorganic ions from the bead to form the molecularly imprinted polymer ion exchange resin, the bead having a porous structure and comprising a cross-linked molecularly imprinted polymer having molecular sized cavities adapted to selectively receive and bind a specific inorganic ion in an liquid medium.
    Type: Application
    Filed: September 27, 2011
    Publication date: January 19, 2012
    Applicant: JOHNS HOPKINS UNIVERSITY
    Inventors: George M. Murray, Kelly A. Van Houten, Glen E. Southard
  • Patent number: 8058208
    Abstract: A molecularly imprinted polymer ion exchange resin for selectively removing one or more inorganic ions in a liquid medium is disclosed and described. The exchange resin can include a bead having a porous structure and comprising a cross-linked molecularly imprinted polymer having molecular sized cavities adapted to selectively receive and bind a specific inorganic ion in a liquid medium. A process for preparing a molecularly imprinted polymer ion exchange resin can include (a) polymerizing a polmerizable mixture in the presence of an inorganic ion imprinting complex to form a bead, said inorganic ion imprinting complex including a ligand and an inorganic ion; and (b) removing the inorganic ions from the bead to form the molecularly imprinted polymer ion exchange resin, the bead having a porous structure and comprising a cross-linked molecularly imprinted polymer having molecular sized cavities adapted to selectively receive and bind a specific inorganic ion in an liquid medium.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: November 15, 2011
    Assignee: The Johns Hopkins University
    Inventors: George M. Murray, Kelly A. Van Houten, Glen E. Southard
  • Publication number: 20080264868
    Abstract: A molecularly imprinted polymer ion exchange resin for selectively removing one or more inorganic ions in a liquid medium is disclosed and described. The exchange resin can include a bead having a porous structure and comprising a cross-linked molecularly imprinted polymer having molecular sized cavities adapted to selectively receive and bind a specific inorganic ion in a liquid medium. A process for preparing a molecularly imprinted polymer ion exchange resin can include (a) polymerizing a polmerizable mixture in the presence of an inorganic ion imprinting complex to form a bead, said inorganic ion imprinting complex including a ligand and an inorganic ion; and (b) removing the inorganic ions from the bead to form the molecularly imprinted polymer ion exchange resin, the bead having a porous structure and comprising a cross-linked molecularly imprinted polymer having molecular sized cavities adapted to selectively receive and bind a specific inorganic ion in an liquid medium.
    Type: Application
    Filed: August 11, 2006
    Publication date: October 30, 2008
    Inventors: George M. Murray, Kelly A. Van Houten, Glen E. Southard
  • Patent number: 7137821
    Abstract: An assessment system includes interim tests administered at predetermined intervals. Each assessment is designed to test specific concepts, and includes multiple-choice test items, each having an item stem, a correct answer, and several distractors. Preferably at least two of the distractors are directed to disparate cognitive levels. Any distractors selected are automatically correlated for each student, in order to determine a presence of a possible problem in a particular concept. Then an individual focus can be applied to correcting any problems. Any distractors selected by any of the students are automatically correlated for the teacher, to determine the presence of a possible problem for a number of students, for applying focus to improving the understanding of some or all of a class for any problem identified by the correlation. A benchmark assessment is also administered that has a format substantially identical to that of an upcoming high-stakes test.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: November 21, 2006
    Assignee: Harcourt Assessment, Inc.
    Inventors: Margaret A. Jorgensen, Kelly Van Houten-King, Douglas A. Gardner
  • Publication number: 20060078864
    Abstract: An assessment system includes interim tests administered at predetermined intervals. Each assessment is designed to test specific concepts, and includes multiple-choice test items, each having an item stem, a correct answer, and several distractors. Preferably at least two of the distractors are directed to disparate cognitive levels. Any distractors selected are automatically correlated for each student, in order to determine a presence of a possible problem in a particular concept. Then an individual focus can be applied to correcting any problems. Any distractors selected by any of the students are automatically correlated for the teacher, to determine the presence of a possible problem for a number of students, for applying focus to improving the understanding of some or all of a class for any problem identified by the correlation. A benchmark assessment is also administered that has a format substantially identical to that of an upcoming high-stakes test.
    Type: Application
    Filed: October 7, 2004
    Publication date: April 13, 2006
    Applicant: Harcourt Assessment, Inc.
    Inventors: Margaret Jorgensen, Kelly Van Houten-King, Douglas Gardner
  • Patent number: 6610848
    Abstract: The luminescent platinum 1,2-enedithiolates are dual emitters with a short-lived 1ILCT* singlet and long-lived oxygen-sensing 3ILCT* triplet (ILCT; intraligand charge transfer transition) emissive excited states. Since only the triplet is quenched by molecular oxygen, the singlet serves as an internal standard for dioxygen measurements. This allows the concentration of dioxygen to be determined from the ratio of the singlet/triplet emissions. The novel dual emitters are readily polymer encapsulated to allow measurement of dioxygen in a range of settings. These polymer encapsulated dual emitters will serve as a drop-in step-out replacement sensor for currently available dioxygen measuring devices.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: August 26, 2003
    Assignee: Lumet LLC
    Inventors: Robert S. Pilato, Neil V. Bough, Kelly Van Houten, Danica C. Heath