Patents by Inventor Kelly Brian Cameron

Kelly Brian Cameron has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8407556
    Abstract: LDPC (Low Density Parity Check) coding and interleaving implemented in multiple-input-multiple-output (MIMO) communication systems. As described herein, a wide variety of irregular LDPC codes may be generated using GRS or RS codes. A variety of communication device types are also presented that may employ the error correcting coding (ECC) using a GRS-based irregular LDPC code, along with appropriately selected interleaving, to provide for communications using ECC. These communication devices may be implemented to in wireless communication systems including those that comply with the recommendation practices and standards being developed by the IEEE 802.11n Task Group (i.e., the Task Group that is working to develop a standard for 802.11 TGn (High Throughput)).
    Type: Grant
    Filed: March 28, 2009
    Date of Patent: March 26, 2013
    Assignee: Broadcom Corporation
    Inventors: Ba-Zhong Shen, Christopher J. Hansen, Joseph Paul Lauer, Kelly Brian Cameron, Tak K. Lee, Hau Thien Tran
  • Patent number: 8370731
    Abstract: LDPC (Low Density Parity Check) codes with corresponding parity check matrices selectively constructed with CSI (Cyclic Shifted Identity) and null sub-matrices. An LDPC matrix corresponding to an LDPC code is employed within a communication device to encode and/or decode coded signals for use in any of a number of communication systems. The LDPC matrix is composed of a number of sub-matrices and may be partitioned into a left hand side matrix and a right hand side matrix. The right hand side matrix may include two sub-matrix diagonals therein that are composed entirely of CSI (Cyclic Shifted Identity) sub-matrices; one of these two sub-matrix diagonals is located on the center sub-matrix diagonal and the other is located just to the left thereof. All other sub-matrices of the right hand side matrix may be null sub-matrices (i.e., all elements therein are values of zero “0”).
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: February 5, 2013
    Assignee: Broadcom Corporation
    Inventors: Ba-Zhong Shen, Hau Thien Tran, Tak K. Lee, Kelly Brian Cameron
  • Patent number: 8327221
    Abstract: Overlapping sub-matrix based LDPC (Low Density Parity Check) decoder. Novel decoding approach is presented, by which, updated bit edge messages corresponding to a sub-matrix of an LDPC matrix are immediately employed for updating of the check edge messages corresponding to that sub-matrix without requiring storing the bit edge messages; also updated check edge messages corresponding to a sub-matrix of the LDPC matrix are immediately employed for updating of the bit edge messages corresponding to that sub-matrix without requiring storing the check edge messages. Using this approach, twice as many decoding iterations can be performed in a given time period when compared to a system that performs updating of all check edge messages for the entire LDPC matrix, then updating of all bit edge messages for the entire LDPC matrix, and so on. When performing this overlapping approach in conjunction with min-sum processing, significant memory savings can also be achieved.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: December 4, 2012
    Assignee: Broadcom Corporation
    Inventors: Hau Thien Tran, Kelly Brian Cameron, Ba-Zhong Shen, Tak K. Lee
  • Publication number: 20120288024
    Abstract: A method for asymmetrical MIMO wireless communication begins by determining a number of transmission antennas for the asymmetrical MIMO wireless communication. The method continues by determining a number of reception antennas for the asymmetrical MIMO wireless communication. The method continues by, when the number of transmission antennas exceeds the number of reception antennas, using spatial time block coding for the asymmetrical MIMO wireless communication. The method continues by, when the number of transmission antennas does not exceed the number of reception antennas, using spatial multiplexing for the asymmetrical MIMO wireless communication.
    Type: Application
    Filed: July 26, 2012
    Publication date: November 15, 2012
    Applicant: BROADCOM CORPORATION
    Inventors: Christopher J. Hansen, Jason A. Trachewsky, Nambirajan Seshadri, Kelly Brian Cameron, Hau Thien Tran, Ba-Zhong Shen
  • Publication number: 20120287973
    Abstract: Flexible rate matching. No constraints or restrictions are placed on a sending communication device when effectuating rate matching. The receiving communication device is able to accommodate received transmissions of essentially any size (e.g., up to an entire turbo codeword that includes all systematic bits and all parity bits). The receiving communication device employs a relatively small-sized memory to ensure a lower cost, smaller sized communication device (e.g., handset or user equipment such as a personal wireless communication device). Moreover, incremental redundancy is achieved in which successive transmissions need not include repeated information therein (e.g., a second transmission need not include any repeated information from a first transmission). Only when reaching an end of a block of bits or codeword to be transmitted, and when wrap around at the end of such block of bits or codeword occurs, would any repeat of bits be incurred within a later transmission.
    Type: Application
    Filed: July 23, 2012
    Publication date: November 15, 2012
    Applicant: BROADCOM CORPORATION
    Inventors: Ba-Zhong Shen, Sirikiat Lek Ariyavisitakul, Mark Kent, Tak K. Lee, Kelly Brian Cameron
  • Publication number: 20120284583
    Abstract: Overlapping sub-matrix based LDPC (Low Density Parity Check) decoder. Novel decoding approach is presented, by which, updated bit edge messages corresponding to a sub-matrix of an LDPC matrix are immediately employed for updating of the check edge messages corresponding to that sub-matrix without requiring storing the bit edge messages; also updated check edge messages corresponding to a sub-matrix of the LDPC matrix are immediately employed for updating of the bit edge messages corresponding to that sub-matrix without requiring storing the check edge messages. Using this approach, twice as many decoding iterations can be performed in a given time period when compared to a system that performs updating of all check edge messages for the entire LDPC matrix, then updating of all bit edge messages for the entire LDPC matrix, and so on. When performing this overlapping approach in conjunction with min-sum processing, significant memory savings can also be achieved.
    Type: Application
    Filed: July 16, 2012
    Publication date: November 8, 2012
    Applicant: BROADCOM CORPORATION
    Inventors: Hau Thien Tran, Kelly Brian Cameron, Ba-Zhong Shen, Tak K. Lee
  • Publication number: 20120275547
    Abstract: Demodulation and/or demapping of a signal (e.g., based on a constellation whose points have a corresponding mapping with associated labels) is performed such that each dimension is processed separately without accounting for influences from the other dimension. For example, the demapping process operates on each respective dimension separately and independently. In some instances, the processing operates iteratively, in that, information identified from processing one of the dimensions is employed in directing the processing in another of the dimensions. Such operation may be performed iteratively by updating/modified information associated with one or more of the dimensions as well. Moreover, decoding may operate in accordance with iterative demapping (e.g., error correction code (ECC) and/or forward error correction (FEC) code by which information bits are encoded) to make estimates of bits within a signal sequence, and those estimates may be used in a subsequent iteration of demapping.
    Type: Application
    Filed: June 30, 2011
    Publication date: November 1, 2012
    Applicant: BROADCOM CORPORATION
    Inventor: Kelly Brian Cameron
  • Patent number: 8301991
    Abstract: LDPC (Low Density Parity Check) coded modulation symbol decoding. Symbol decoding is supported by appropriately modifying an LDPC tripartite graph to eliminate the bit nodes thereby generating an LDPC bipartite graph (such that symbol nodes are appropriately mapped directly to check nodes thereby obviating the bit nodes). The edges that communicatively couple the symbol nodes to the check nodes are labeled appropriately to support symbol decoding of the LDPC coded modulation signal. The iterative decoding processing may involve updating the check nodes as well as estimating the symbol sequence and updating the symbol nodes. In some embodiments, an alternative hybrid decoding approach may be performed such that a combination of bit level and symbol level decoding is performed. This LDPC symbol decoding out-performs bit decoding only. In addition, it provides comparable or better performance of bit decoding involving iterative updating of the associated metrics.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: October 30, 2012
    Assignee: Broadcom Corporation
    Inventors: Ba-Zhong Shen, Hau Thien Tran, Kelly Brian Cameron
  • Publication number: 20120272118
    Abstract: Variable modulation within combined LDPC (Low Density Parity Check) coding and modulation coding systems. Variable modulation encoding of LDPC coded symbols is presented. In addition, LDPC encoding, that generates an LDPC variable code rate signal, may also be performed as well. The encoding can generate an LDPC variable code rate and/or modulation signal whose code rate and/or modulation may vary as frequently as on a symbol by symbol basis. Some embodiments employ a common constellation shape for all of the symbols of the signal sequence, yet individual symbols may be mapped according different mappings of the commonly shaped constellation; such an embodiment may be viewed as generating a LDPC variable mapped signal. In general, any one or more of the code rate, constellation shape, or mapping of the individual symbols of a signal sequence may vary as frequently as on a symbol by symbol basis.
    Type: Application
    Filed: June 29, 2012
    Publication date: October 25, 2012
    Applicant: BROADCOM CORPORATION
    Inventors: Ba-Zhong Shen, Hau Thien Tran, Kelly Brian Cameron
  • Patent number: 8250432
    Abstract: Variable modulation within combined LDPC (Low Density Parity Check) coding and modulation coding systems. Variable modulation encoding of LDPC coded symbols is presented. In addition, LDPC encoding, that generates an LDPC variable code rate signal, may also be performed as well. The encoding can generate an LDPC variable code rate and/or modulation signal whose code rate and/or modulation may vary as frequently as on a symbol by symbol basis. Some embodiments employ a common constellation shape for all of the symbols of the signal sequence, yet individual symbols may be mapped according different mappings of the commonly shaped constellation; such an embodiment may be viewed as generating a LDPC variable mapped signal. In general, any one or more of the code rate, constellation shape, or mapping of the individual symbols of a signal sequence may vary as frequently as on a symbol by symbol basis.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: August 21, 2012
    Assignee: Broadcom Corporation
    Inventors: Ba-Zhong Shen, Hau Thien Tran, Kelly Brian Cameron
  • Publication number: 20120192029
    Abstract: LDPC (Low Density Parity Check) codes with corresponding parity check matrices selectively constructed with CSI (Cyclic Shifted Identity) and null sub-matrices. An LDPC matrix corresponding to an LDPC code is employed within a communication device to encode and/or decode coded signals for use in any of a number of communication systems. The LDPC matrix is composed of a number of sub-matrices and may be partitioned into a left hand side matrix and a right hand side matrix. The right hand side matrix may include two sub-matrix diagonals therein that are composed entirely of CSI (Cyclic Shifted Identity) sub-matrices; one of these two sub-matrix diagonals is located on the center sub-matrix diagonal and the other is located just to the left thereof. All other sub-matrices of the right hand side matrix may be null sub-matrices (i.e., all elements therein are values of zero “0”).
    Type: Application
    Filed: March 19, 2012
    Publication date: July 26, 2012
    Applicant: BROADCOM CORPORATION
    Inventors: Ba-Zhong Shen, Hau Thien Tran, Tak K. Lee, Kelly Brian Cameron
  • Patent number: 8229039
    Abstract: Flexible rate matching. No constraints or restrictions are placed on a sending communication device when effectuating rate matching. The receiving communication device is able to accommodate received transmissions of essentially any size (e.g., up to an entire turbo codeword that includes all systematic bits and all parity bits). The receiving communication device employs a relatively small-sized memory to ensure a lower cost, smaller sized communication device (e.g., handset or user equipment such as a personal wireless communication device). Moreover, incremental redundancy is achieved in which successive transmissions need not include repeated information therein (e.g., a second transmission need not include any repeated information from a first transmission). Only when reaching an end of a block of bits or codeword to be transmitted, and when wrap around at the end of such block of bits or codeword occurs, would any repeat of bits be incurred within a later transmission.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: July 24, 2012
    Assignee: Broadcom Corporation
    Inventors: Ba-Zhong Shen, Sirikiat Lek Ariyavisitakul, Mark Kent, Tak K. Lee, Kelly Brian Cameron
  • Patent number: 8230298
    Abstract: Overlapping sub-matrix based LDPC (Low Density Parity Check) decoder. Novel decoding approach is presented, by which, updated bit edge messages corresponding to a sub-matrix of an LDPC matrix are immediately employed for updating of the check edge messages corresponding to that sub-matrix without requiring storing the bit edge messages; also updated check edge messages corresponding to a sub-matrix of the LDPC matrix are immediately employed for updating of the bit edge messages corresponding to that sub-matrix without requiring storing the check edge messages. Using this approach, twice as many decoding iterations can be performed in a given time period when compared to a system that performs updating of all check edge messages for the entire LDPC matrix, then updating of all bit edge messages for the entire LDPC matrix, and so on. When performing this overlapping approach in conjunction with min-sum processing, significant memory savings can also be achieved.
    Type: Grant
    Filed: January 1, 2010
    Date of Patent: July 24, 2012
    Assignee: Broadcom Corporation
    Inventors: Hau Thien Tran, Kelly Brian Cameron, Ba-Zhong Shen, Tak K. Lee
  • Patent number: 8176380
    Abstract: Algebraic method to construct LDPC (Low Density Parity Check) codes with parity check matrix having CSI (Cyclic Shifted Identity) sub-matrices. A novel approach is presented by which identity sub-matrices undergo cyclic shifting, thereby generating CSI sub-matrices that are arranged forming a parity check matrix of an LDPC code. The parity check matrix of the LDPC code may correspond to a regular LDPC code, or the parity check matrix of the LDPC code may undergo further modification to transform it to that of an irregular LDPC code. The parity check matrix of the LDPC code may be partitioned into 2 sub-matrices such that one of these 2 sub-matrices is transformed to be a block dual diagonal matrix; the other of these 2 sub-matrices may be modified using a variety of means, including the density evolution approach, to ensure the desired bit and check degrees of the irregular LDPC code.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: May 8, 2012
    Assignee: Broadcom Corporation
    Inventors: Ba-Zhong Shen, Joseph Paul Lauer, Christopher J. Hansen, Kelly Brian Cameron
  • Patent number: 8145987
    Abstract: LDPC (Low Density Parity Check) codes with corresponding parity check matrices selectively constructed with CSI (Cyclic Shifted Identity) and null sub-matrices. An LDPC matrix corresponding to an LDPC code is employed within a communication device to encode and/or decode coded signals for use in any of a number of communication systems. The LDPC matrix is composed of a number of sub-matrices and may be partitioned into a left hand side matrix and a right hand side matrix. The right hand side matrix may include two sub-matrix diagonals therein that are composed entirely of CSI (Cyclic Shifted Identity) sub-matrices; one of these two sub-matrix diagonals is located on the center sub-matrix diagonal and the other is located just to the left thereof. All other sub-matrices of the right hand side matrix may be null sub-matrices (i.e., all elements therein are values of zero “0”).
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: March 27, 2012
    Assignee: Broadcom Corporation
    Inventors: Ba-Zhong Shen, Hau Thien Tran, Tak K. Lee, Kelly Brian Cameron
  • Publication number: 20120014364
    Abstract: A wireless local area network (WLAN) transmitter includes a baseband processing module and a plurality of radio frequency (RF) transmitters. The processing module selects one of a plurality of modes of operation based on a mode selection signal. The processing module determines a number of transmit streams based on the mode selection signal. The processing of the data further continues by converting encoded data into streams of symbols in accordance with the number of transmit streams and the mode selection signal. A number of the plurality of RF transmitters are enabled based on the mode selection signal to convert a corresponding one of the streams of symbols into a corresponding RF signal such that a corresponding number of RF signals is produced.
    Type: Application
    Filed: September 26, 2011
    Publication date: January 19, 2012
    Applicant: BROADCOM CORPORATION
    Inventors: Christopher J. Hansen, Jason A. Trachewsky, Nambirajan Seshadri, Kelly Brian Cameron, Hau Thien Tran, Ba-Zhong Shen
  • Patent number: 8086930
    Abstract: Fixed-spacing parity insertion for FEC (Forward Error Correction) codewords. Fixed spacing is employed to intersperse parity bits among information bits when generating a codeword. According to this fixed spacing, a same number of information bits is placed between each of the parity bits within the codeword. If desired, the order of the parity bits may be changed before they are placed into the codeword. Moreover, the order of the information bits may also be modified before they are placed into the codeword. The FEC encoding employed to generate the parity bits from the information bits can be any of a variety of codes include Reed-Solomon (RS) code, LDPC (Low Density Parity Check) code, turbo code, turbo trellis coded modulation (TTCM), or some other code providing FEC capabilities.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: December 27, 2011
    Assignee: Broadcom Corporation
    Inventors: Tak K. Lee, Ba-Zhong Shen, Hau Thien Tran, Kelly Brian Cameron
  • Patent number: 8059740
    Abstract: A wireless local area network (WLAN) transmitter includes a baseband processing module and a plurality of radio frequency (RF) transmitters. The baseband processing module is operably coupled to process data by scrambling the data in accordance with a pseudo random sequence to produce scrambled data. The processing of the data continues by selecting one of a plurality of encoding modes based on a mode selection signal. The processing of the data continues by encoding the scrambled data in accordance with the one of the plurality of encoding modes to produce encoded data. The processing of the data continues by determining a number of transmit streams based on the mode selection signal. The processing of the data further continues by converting the encoded data into streams of symbols in accordance with the number of transmit streams and the mode selection signal.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: November 15, 2011
    Assignee: Broadcom Corporation
    Inventors: Christopher J. Hansen, Jason A. Trachewsky, Nambirajan Seshadri, Kelly Brian Cameron, Hau Thien Tran, Ba-Zhong Shen
  • Publication number: 20110258518
    Abstract: Variable modulation within combined LDPC (Low Density Parity Check) coding and modulation coding systems. A novel approach is presented for variable modulation encoding of LDPC coded symbols. In addition, LDPC encoding, that generates an LDPC variable code rate signal, may also be performed as well. The encoding can generate an LDPC variable code rate and/or modulation signal whose code rate and/or modulation may vary as frequently as on a symbol by symbol basis. Some embodiments employ a common constellation shape for all of the symbols of the signal sequence, yet individual symbols may be mapped according different mappings of the commonly shaped constellation; such an embodiment may be viewed as generating a LDPC variable mapped signal. In general, any one or more of the code rate, constellation shape, or mapping of the individual symbols of a signal sequence may vary as frequently as on a symbol by symbol basis.
    Type: Application
    Filed: May 26, 2011
    Publication date: October 20, 2011
    Applicant: BROADCOM CORPORATION
    Inventors: Ba-Zhong Shen, Hau Thien Tran, Kelly Brian Cameron
  • Patent number: 7975202
    Abstract: Variable modulation with LDPC (Low Density Parity Check) coding provides for generation of LDPC coded symbols having different respective code rates and/or modulations. In addition, appropriate LDPC encoding, that generates an LDPC variable code rate signal, may also be performed as well. The encoding can generate an LDPC variable code rate and/or modulation signal whose code rate and/or modulation may vary as frequently as on a symbol by symbol basis. Some embodiments employ a common constellation shape for all of the symbols of the signal sequence, yet individual symbols may be mapped according different mappings of the commonly shaped constellation; such an embodiment may be viewed as generating a LDPC variable mapped signal. In general, any one or more of the code rate, constellation shape, and/or mapping of the individual symbols of a signal sequence may vary as frequently as on a symbol by symbol basis.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: July 5, 2011
    Assignee: Broadcom Corporation
    Inventors: Ba-Zhong Shen, Hau Thien Tran, Kelly Brian Cameron