Patents by Inventor Kelly H. Hale

Kelly H. Hale has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7072698
    Abstract: A system for wireless communications is provided. The system includes a hand-held wireless communications device, such as a cell phone. An antenna is connected to the cell phone. The antenna radiates radio waves over an area of less than 360 degrees of arc, such as in a cardioid or hemisphere. The antenna is oriented such that hemisphere is in the direction away from a head of a user of the cell phone.
    Type: Grant
    Filed: September 13, 1999
    Date of Patent: July 4, 2006
    Assignee: Skyworks Solutions, Inc.
    Inventors: Paul A. Underbrink, Kelly H. Hale, Guang-Ming Yin, Patrick D. Ryan, Joseph H. Colles, Daryush Shamlou, Christian Levesque
  • Patent number: 6980772
    Abstract: A system for wireless communications is provided. The system includes a hand-held wireless communications device, such as a cell phone. An antenna is connected to the cell phone. The antenna radiates radio waves over an area of less than 360 degrees of arc, such as in a cardioid or hemisphere. The antenna is oriented such that hemisphere is in the direction away from a head of a user of the cell phone.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: December 27, 2005
    Assignee: Conexant Systems, Inc.
    Inventors: Paul A. Underbrink, Kelly H. Hale, Guang-Ming Yin, Patrick D. Ryan, Joseph H. Colles, Daryush Shamlou, Christian Levesque
  • Patent number: 6933876
    Abstract: A cell phone is provided that may be used with multiple radio formats, such as GSM and CDMA. The cell phone includes a receiver that receives radio signals and converts them into electrical signals. An analog to digital converter is connected to the receiver and converts an analog input to a digital output having an adjustable number of bits at an adjustable sampling frequency. A cell phone application specific integrated circuit is connected to the analog to digital converter, which is used to process the digital output to extract encoded telecommunications data in one of the supported radio formats.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: August 23, 2005
    Assignee: Skyworks Solutions, Inc.
    Inventors: Paul A. Underbrink, Kelly H. Hale, Guang-Ming Yin, Patrick D. Ryan, Joseph H. Colles, Daryush Shamlou
  • Patent number: 6754287
    Abstract: Communications systems, and particularly portable personal communications systems, such as portable phones, are becoming increasingly digital. One area that has remained largely analog, however, is the modulation and RF amplifier circuits. To produce a RF frequency waveform. An output of a class D amplifier is coupled to an integrator to create an analog signal. A resonant circuit shapes an output waveform based on the analog signal to create a sinusoidal RF broadcast signal. The waveform of the class D amplifier may be duty cycle modulated. Digital modulation may occur using a digital sigma delta modulator or a digital programmable divide modulator. Using the digital modulation techniques and class D amplification techniques together allows for broadcast a PSK signal that has been decomposed into amplitude and phase components.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: June 22, 2004
    Assignee: Skyworks Solutions, Inc.
    Inventors: Paul A. Underbrink, Daryush Shamlou, Ricke W. Clark, Joseph H. Colles, Guangming Yin, Patrick D. Ryan, Kelly H. Hale
  • Patent number: 6686755
    Abstract: A system for testing a microelectronic circuit includes a test bed for mounting a microelectronic circuit, and a signal source for applying a signal to a microelectronic circuit mounted on the test bed. The system additionally includes a test probe for wirelessly receiving electromagnetic response signals from the microelectronic circuit mounted on the test bed. In a preferred form, the electromagnetic response signals are radio-frequency signals. The test system additionally includes a computer connected to be test probe for analyzing the electromagnetic response signals. An integrated circuit for testing on the test system has a test circuit portion that emits electromagnetic radiation in response to a predetermined signal applied to the test circuit.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: February 3, 2004
    Assignee: Skyworks Solutions, Inc.
    Inventors: Stanley A. White, Kenneth S. Walley, James W. Johnston, P. Michael Henderson, Kelly H. Hale, Warner B. Andrews, Jr., Jonathan I. Siann
  • Patent number: 6651021
    Abstract: The invention discloses a system for improving performance of the RF amplification stage of communication receivers by accounting for the signal environment of the RF amplifier. The linearity, gain and power supply voltage of the RF amplification stage of the communication receiver is adjusted to produce an optimal signal into the succeeding narrow-band amplification stage(s). The adjustment of the RF stage includes mechanisms such as adjusting the RF amplifier power supply level using a DC to DC converter. It also includes allowing distortion in the RF amplification stage if the distortion in the RF amplification stage does not affect the target signal. For example, if there were a strong signal that fell within the same band as the target signal, amplification would be allowed to be so high that it distorted the undesired signals, but not the tined signals.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: November 18, 2003
    Assignee: Skyworks Solutions, Inc.
    Inventors: Paul A. Underbrink, Daryush Shamlou, Ricke W. Clark, Joseph H. Colles, Guangming Yin, Patrick D. Ryan, Kelly H. Hale
  • Patent number: 6535735
    Abstract: Modern digital integrated circuits are commonly synchronized in their workings by clock circuits. The clock frequency for a circuit must take into account the propagation delay of signals within the critical path of the circuit. If the clock time is not adequate to allow propagation of signals through the critical path, improper circuit operation may result. The propagation delay is not a constant from circuit to circuit, and even in a single circuit may change due to temperature, power supply voltage and the like. Commonly, this variation is handled by assuming a worse case propagation delay of the critical path, and then designing the clock frequency and minimum power supply voltage of the circuit so that the circuit will function under worst case conditions.
    Type: Grant
    Filed: March 22, 2001
    Date of Patent: March 18, 2003
    Assignee: Skyworks Solutions, Inc.
    Inventors: Paul A. Underbrink, Daryush Shamlou, Ricke W. Clark, Joseph H. Colles, Guangming Yin, Patrick D. Ryan, Kelly H. Hale
  • Patent number: 6532370
    Abstract: A cell phone is provided that may be used with multiple radio formats, such as GSM and CDMA. The cell phone includes a receiver that receives radio signals and converts them into electrical signals. An analog to digital converter is connected to the receiver and converts an analog input to a digital output having an adjustable number of bits at an adjustable sampling frequency. A cell phone application specific integrated circuit is connected to the analog to digital converter, which is used to process the digital output to extract encoded telecommunications data in one of the supported radio formats.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: March 11, 2003
    Assignee: Skyworks Solutions, Inc.
    Inventors: Paul A. Underbrink, Kelly H. Hale, Guang-Ming Yin, Patrick D. Ryan, Joseph H. Colles, Daryush Shamlou
  • Patent number: 6531982
    Abstract: A system is provided for communicating location and other related information of a field unit to a remote base station. The field unit generates position signals based on signals received from communication with a plurality of GPS satellites. These position signals are transmitted to a remote base station, where they are processed and displayed. The field unit includes an environmental circuit having devices for determining an environmental condition and producing an environmental signal representative of the environmental condition. The environmental signal is also transmitted to the remote base station for processing and display. The field unit is also provided with a cellular link circuit for transmitting the position signals and the environmental signal to the remote base station via a cellular link.
    Type: Grant
    Filed: September 30, 1997
    Date of Patent: March 11, 2003
    Assignee: SiRF Technology, Inc.
    Inventors: Stanley A. White, Kenneth S. Walley, James W. Johnston, P. Michael Henderson, Kelly H. Hale, Warner B. Andrews, Jr., Jonathan I. Siann
  • Publication number: 20020193958
    Abstract: The invention discloses a system for improving performance of the RF amplification stage of communication receivers by accounting for the signal environment of the RF amplifier. The linearity, gain and power supply voltage of the RF amplification stage of the communication receiver is adjusted to produce an optimal signal into the succeeding narrow-band amplification stage(s). The adjustment of the RF stage includes mechanisms such as adjusting the RF amplifier power supply level using a DC to DC converter. It also includes allowing distortion in the RF amplification stage if the distortion in the RF amplification stage does not affect the target signal. For example, if there were a strong signal that fell within the same band as the target signal, amplification would be allowed to be so high that it distorted the undesired signals, but not the tined signals.
    Type: Application
    Filed: June 15, 2001
    Publication date: December 19, 2002
    Inventors: Paul A. Underbrink, Daryush Shamlou, Ricke W. Clark, Joseph H. Colles, Guangming Yin, Patrick D. Ryan, Kelly H. Hale
  • Publication number: 20020136326
    Abstract: Communications systems, and particularly portable personal communications systems, such as portable phones, are becoming increasingly digital. The tendency towards digital systems has come about, in part, because digital systems may operate on less power than their analog counterparts. One area that has remained largely analog, however, is the modulation and RF amplifier circuits. To produce a RF frequency waveform a class D switching type amplifier is used. The output of the class D amplifier is coupled to an integrator, to create an analog signal. The analog signal coupled to a resonant circuit, to shape the output waveform into a sinusoidal RF broadcast signal. The waveform of the class D amplifier is duty cycle modulated by a combination signal representing the combination of desired amplitude modulation of the broadcast signal and the desired average power level desired.
    Type: Application
    Filed: March 21, 2001
    Publication date: September 26, 2002
    Inventors: Paul A. Underbrink, Daryush Shamlou, Ricke W. Clark, Joseph H. Colles, Guangming Yin, Patrick D. Ryan, Kelly H. Hale
  • Publication number: 20020135343
    Abstract: Modern digital integrated circuits are commonly synchronized in their workings by clock circuits. The clock frequency for a circuit must take into account the propagation delay of signals within the critical path of the circuit. If the clock time is not adequate to allow propagation of signals through the critical path, improper circuit operation may result. The propagation delay is not a constant from circuit to circuit, and even in a single circuit may change due to temperature, power supply voltage and the like. Commonly, this variation is handled by assuming a worse case propagation delay of the critical path, and then designing the clock frequency and minimum power supply voltage of the circuit so that the circuit will function under worst case conditions.
    Type: Application
    Filed: March 22, 2001
    Publication date: September 26, 2002
    Inventors: Paul A. Underbrink, Daryush Shamlou, Ricke W. Clark, Joseph H. Colles, Guangming Yin, Patrick D. Ryan, Kelly H. Hale
  • Patent number: 6424441
    Abstract: A method and apparatus for sensing audio frequency-pressure modulation of the moisture content of the atmosphere caused by a moisture-laden audio source, such as a live human voice, is disclosed. A first light emitter is provided to generate a first light beam. An audio source that emits moisture, and the environment, modulate the first light beam to generate a first modulated light beam. A first detector is provided to detect and demodulate the first modulated light beam to recover an uncompensated audio signal. A second light emitter is provided to generate a second light beam. The second light beam is modulated by the environment and not by the audio source to produce a second modulated light beam. A second detector is provided to detect and demodulate the second modulated light beam to recover the signal component caused by environmental conditions.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: July 23, 2002
    Assignee: Conexant Systems, Inc.
    Inventors: Stanley A. White, Kenneth S. Walley, James W. Johnston, P. Michael Henderson, Kelly H. Hale, Warner B. Andrews, Jr., Jonathan I. Siann
  • Publication number: 20020058539
    Abstract: A system for wireless communications is provided. The system includes a hand-held wireless communications device, such as a cell phone. An antenna is connected to the cell phone. The antenna radiates radio waves over an area of less than 360 degrees of arc, such as in a cardioid or hemisphere. The antenna is oriented such that hemisphere is in the direction away from a head of a user of the cell phone.
    Type: Application
    Filed: September 13, 1999
    Publication date: May 16, 2002
    Inventors: PAUL A. UNDERBRINK, KELLY H. HALE, GUANG-MING YIN, PATRICK D. RYAN, JOSEPH H. COLLES, DARYUSH SHAMLOU, CHRISTIAN LEVESQUE
  • Patent number: 6353413
    Abstract: A controller that communicates with a first set of devices and a second set of devices is disclosed. The controller includes a transmitter for transmitting commands to remotely control the first set of devices, and for communicating input/output (I/O) data with the second set of devices. A microphone, speaker, display and cellular and cordless phone circuitry are integrated into the controller to provide the controller with phone and paging capabilities. Systems for determining the spatial location of a target object are also disclosed. The spatial location of the target object is determined with reference to a predetermined spatial reference point based on measured elapsed times, which represent the difference between a time reference and the time of receipt of a location signal from the target object at the known locations.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: March 5, 2002
    Inventors: Stanley A. White, Kenneth S. Walley, James W. Johnston, P. Michael Henderson, Kelly H. Hale, Warner B. Andrews, Jr., Jonathan I. Siann
  • Patent number: 6331782
    Abstract: A system for testing a microelectronic circuit includes a test bed for mounting a microelectronic circuit, and a signal source for applying a signal to a microelectronic circuit mounted on the test bed. The system additionally includes a test probe for wirelessly receiving electromagnetic response signals from the microelectronic circuit mounted on the test bed. In a preferred form, the electromagnetic response signals are radio-frequency signals. The test system additionally includes a computer connected to be test probe for analyzing the electromagnetic response signals. An integrated circuit for testing on the test system has a test circuit portion that emits electromagnetic radiation in response to a predetermined signal applied to the test circuit.
    Type: Grant
    Filed: March 23, 1998
    Date of Patent: December 18, 2001
    Assignee: Conexant Systems, Inc.
    Inventors: Stanley A. White, Kenneth S. Walley, James W. Johnston, P. Michael Henderson, Kelly H. Hale, Warner B. Andrews, Jr., Jonathan I. Siann
  • Publication number: 20010005145
    Abstract: A system for testing a microelectronic circuit includes a test bed for mounting a microelectronic circuit, and a signal source for applying a signal to a microelectronic circuit mounted on the test bed. The system additionally includes a test probe for wirelessly receiving electromagnetic response signals from the microelectronic circuit mounted on the test bed. In a preferred form, the electromagnetic response signals are radio-frequency signals. The test system additionally includes a computer connected to be test probe for analyzing the electromagnetic response signals. An integrated circuit for testing on the test system has a test circuit portion that emits electromagnetic radiation in response to a predetermined signal applied to the test circuit.
    Type: Application
    Filed: January 16, 2001
    Publication date: June 28, 2001
    Inventors: Stanley A. White, Kenneth S. Walley, James W. Johnston, P. Michael Henderson, Kelly H. Hale, Warner B. Andrews, Jonathan I. Siann
  • Patent number: 6192134
    Abstract: A system and method for a directional microphone system is disclosed. The directional microphone system can adaptively track and detect sources of sound information, and can reduce background noise. A first monolithic detection unit for detecting sound information and performing local signal processing on the detected sound information is provided. In the detection unit, an integrated transducer is provided for receiving acoustic waves and for generating sound information representative of the waves. A processor is coupled to the transducer for receiving the sound information and for performing local digital signal processing on the sound information to generate locally processed sound information. A base unit is coupled to the first monolithic detection unit and includes a global processor which receives the locally processed sound information and performs global digital signal processing on the locally processed sound information to generate globally processed sound information.
    Type: Grant
    Filed: November 20, 1997
    Date of Patent: February 20, 2001
    Assignee: Conexant Systems, Inc.
    Inventors: Stanley A. White, Kenneth S. Walley, James W. Johnston, P. Michael Henderson, Kelly H. Hale, Warner B. Andrews, Jr., Jonathan I. Siann
  • Patent number: 6184696
    Abstract: The described method and apparatus wirelessly test individual integrated circuit die on a wafer containing multiple die. The method incorporates activating a selected die on the wafer by wirelessly impacting the die with at least two beams of electromagnetic radiation so that the die receives radiation energy having at least a first energy level, thereby activating the die by causing a current to flow in the die. Each beam of electromagnetic energy individually has less than the first energy level required to activate the die. The beams of electromagnetic energy are directed so that they at least partially overlap on the selected die. In the region of overlap, the two beams together impact the die with an energy level at least equal to the first energy level required to activate the die. The method may additionally include detecting electromagnetic radiation emitted by the die in response to the electromagnetic energy received from the beams of electromagnetic energy.
    Type: Grant
    Filed: March 23, 1998
    Date of Patent: February 6, 2001
    Assignee: Conexant Systems, Inc.
    Inventors: Stanley A. White, Kenneth S. Walley, James W. Johnston, P. Michael Henderson, Kelly H. Hale, Warner B. Andrews, Jr., Jonathan I. Siann
  • Patent number: 6072882
    Abstract: A method and apparatus for sensing audio frequency-pressure modulation of the moisture content of the atmosphere caused by a moisture-laden audio source, such as a live human voice, is disclosed. A first light emitter is provided to generate a first light beam. An audio source that emits moisture, and the environment, modulate the first light beam to generate a first modulated light beam. A first detector is provided to detect and demodulate the first modulated light beam to recover an uncompensated audio signal. A second light emitter is provided to generate a second light beam. The second light beam is modulated by the environment and not by the audio source to produce a second modulated light beam. A second detector is provided to detect and demodulate the second modulated light beam to recover the signal component caused by environmental conditions.
    Type: Grant
    Filed: August 29, 1997
    Date of Patent: June 6, 2000
    Assignee: Conexant Systems, Inc.
    Inventors: Stanley A. White, Kenneth S. Walley, James W. Johnston, P. Michael Henderson, Kelly H. Hale, Warner B. Andrews, Jr., Jonathan I. Siann