Patents by Inventor Kelly V. Hillman

Kelly V. Hillman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5907304
    Abstract: A modular antenna architecture includes a plurality of joined-together flat, laminate-configured antenna sub-panels, in which RF signal processing (RF amplifier) modules are embedded within a very lightweight, honeycomb-configured support member, upon which respective antenna sub-array and control, power and beam steering signal distribution networks are respectively mounted. The thickness of the honeycomb-configured support member-embedded is sized relative to the lengths of the RF signal processing modules such that input/output ports at opposite ends of the RF modules are substantially coplanar with conductor traces on the front and rear facesheets, so that the RF modules provide the functionality of RF feed-throughs to provide RF signal coupling connections between the rear and front facesheets of the antenna sub-panel.
    Type: Grant
    Filed: January 9, 1997
    Date of Patent: May 25, 1999
    Assignee: Harris Corporation
    Inventors: Steven E. Wilson, James B. Nichols, Gary A. Rief, David M. Holaday, Walter M. Whybrew, Donald J. Beck, Brett A. Pigon, Kelly V. Hillman, Erik Granholm
  • Patent number: 5894983
    Abstract: A thermosonic ribbon bonding process uses a combination of a relatively low temperature and a high frequency to bond a ribbon conductor to conductive bonding sites of a system level support structure, such as a space/airborne antenna, containing circuit components whose characteristics might otherwise be degraded at an elevated temperature customarily used in device-level thermosonic bonding processes. By relatively low temperature is meant a temperature no greater than the minimum temperature that would potentially cause a modification of the circuit parameters of at least one of the system's components. Such a minimum temperature may lie in a range on the order of 25-85.degree. C., while the ultrasonic bonding frequency preferably lies in a range of from 122 KHz to 140 KHz. For gold ribbon to gold pad bonds, this high frequency range achieves the requisite atomic diffusion bonding energy, without causing fracturing or destruction of the gold ribbon or its interface with the gold pad.
    Type: Grant
    Filed: January 9, 1997
    Date of Patent: April 20, 1999
    Assignee: Harris Corporation
    Inventors: Donald J. Beck, Kelly V. Hillman, Hector Deju, Gary A. Rief, Thomas K. Buschor, James B. Nichols, Brett A. Pigon, Walter M. Whybrew, Steven E. Wilson