Patents by Inventor Kelsey Yee

Kelsey Yee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11515682
    Abstract: Incoherently combining light from different lasers while maintaining high brightness is challenging using conventional fiber bundling techniques, where fibers from different lasers are bundled adjacently in a tight-packed arrangement. The brightness can be increased by tapering the tips of the bundled fibers to match a single, multi-mode output fiber, e.g., one whose core that is just wide enough to fit the input cores. This increases the brightness of the beam combining. In addition, reducing the outer diameters of the signal fiber claddings allows the signal fibers to be bundled closer together, making it possible to couple more signal fiber cores to the core of a multi-mode output fiber. Similarly, reducing the outer diameter of the pump fiber cladding and/or etching away corresponding portions of the signal fiber cladding in a pump/signal combiner makes it possible to couple more pump light into the signal fiber cladding, again increasing brightness.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: November 29, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Christopher Hwang, Jason E. Langseth, Kelsey Yee, John Kim, Yin Wan Tam
  • Patent number: 11108209
    Abstract: Stimulated Brillouin scattering (SBS) limits the maximum power in fiber lasers with narrow linewidths. SBS occurs when the power exceeds a threshold proportional to the beam area divided by the effective fiber length. The fiber lasers disclosed here operate with higher SBS power thresholds (and hence higher maximum powers at kilohertz-class linewidths) than other fiber lasers thanks to several techniques. These techniques include using high-absorption gain fibers, operating the laser with low pump absorption (e.g., ?80%), reducing the length of un-pumped gain fiber at the fiber output, foregoing a delivery fiber at the output, foregoing a cladding light stripper at the output, using free-space dichroic mirrors to separate signal light from unabsorbed pump light, and using cascaded gain fibers with non-overlapping Stokes shifts. The upstream gain fiber has high absorption and a larger diameter for high gain, and subsequent gain fiber has a smaller diameter to improve beam quality.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: August 31, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Steven J. Augst, Kelsey Yee, Franklin Jose
  • Publication number: 20210006029
    Abstract: Stimulated Brillouin scattering (SBS) limits the maximum power in fiber lasers with narrow linewidths. SBS occurs when the power exceeds a threshold proportional to the beam area divided by the effective fiber length. The fiber lasers disclosed here operate with higher SBS power thresholds (and hence higher maximum powers at kilohertz-class linewidths) than other fiber lasers thanks to several techniques. These techniques include using high-absorption gain fibers, operating the laser with low pump absorption (e.g., ?80%), reducing the length of un-pumped gain fiber at the fiber output, foregoing a delivery fiber at the output, foregoing a cladding light stripper at the output, using free-space dichroic mirrors to separate signal light from unabsorbed pump light, and using cascaded gain fibers with non-overlapping Stokes shifts. The upstream gain fiber has high absorption and a larger diameter for high gain, and subsequent gain fiber has a smaller diameter to improve beam quality.
    Type: Application
    Filed: May 1, 2020
    Publication date: January 7, 2021
    Inventors: Steven J. AUGST, Kelsey Yee, Franklin Jose
  • Publication number: 20200395727
    Abstract: Incoherently combining light from different lasers while maintaining high brightness is challenging using conventional fiber bundling techniques, where fibers from different lasers are bundled adjacently in a tight-packed arrangement. The brightness can be increased by tapering the tips of the bundled fibers to match a single, multi-mode output fiber, e.g., one whose core that is just wide enough to fit the input cores. This increases the brightness of the beam combining. In addition, reducing the outer diameters of the signal fiber claddings allows the signal fibers to be bundled closer together, making it possible to couple more signal fiber cores to the core of a multi-mode output fiber. Similarly, reducing the outer diameter of the pump fiber cladding and/or etching away corresponding portions of the signal fiber cladding in a pump/signal combiner makes it possible to couple more pump light into the signal fiber cladding, again increasing brightness.
    Type: Application
    Filed: April 14, 2020
    Publication date: December 17, 2020
    Inventors: Christopher Hwang, Jason E. Langseth, Kelsey Yee, John Kim, Yin Wan Tam