Patents by Inventor Kelvin Yen

Kelvin Yen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240018199
    Abstract: Described herein is a novel, mitochondrial encoded, open reading frame, that leads to the production of a new mitochondrial peptide. Residing within the ND-Two subunit, a specific small nucleotide polymorphism disrupts expression of this mitochondrial peptide, and is correlated with an increase in obesity and diabetes, particularly in certain ethnic populations. In vitro administration of the peptide increases insulin secretion, decreases fat accumulation and improves glucose uptake in muscle cell. Antibodies generated against the peptide can be used for detecting peptide deficiency, in addition to SNP detection, supporting diagnostic approaches. In vivo studies further revealed that administration of the peptide improves glucose tolerance, thereby providing a new therapeutic avenue for a novel diabetes therapy and decreases bodyweight, thus serving as a novel obesity therapy. Generation of synthetic analogs further enhance or abrogated activity relative to the natural peptide.
    Type: Application
    Filed: August 1, 2023
    Publication date: January 18, 2024
    Applicant: University of Southern California
    Inventors: Pinchas COHEN, Kelvin YEN
  • Patent number: 11760783
    Abstract: Described herein is a novel, mitochondrial encoded, open reading frame, that leads to the production of a new mitochondrial peptide. Residing within the ND-Two subunit, a specific small nucleotide polymorphism disrupts expression of this mitochondrial peptide, and is correlated with an increase in obesity and diabetes, particularly in certain ethnic populations. In vitro administration of the peptide increases insulin secretion, decreases fat accumulation and improves glucose uptake in muscle cell. Antibodies generated against the peptide can be used for detecting peptide deficiency, in addition to SNP detection, supporting diagnostic approaches. In vivo studies further revealed that administration of the peptide improves glucose tolerance, thereby providing a new therapeutic avenue for a novel diabetes therapy and decreases bodyweight, thus serving as a novel obesity therapy. Generation of synthetic analogs further enhance or abrogated activity relative to the natural peptide.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: September 19, 2023
    Assignee: University of Southern California
    Inventors: Pinchas Cohen, Kelvin Yen
  • Publication number: 20230167161
    Abstract: Described herein is a new mitochondrial peptide. This small peptide is capable of modulating cancer, through a variety of mechanisms including autophagy/apoptosis, reduction of tumor cell viability, inducing inflammatory response in senescent cells and conversion of macrophage cell type. Administration of the peptide, its analogs and derivatives thereof, are likely to be effective treatments for cancer therapy, including generation of synthetic analogs that further enhance or abrogate activity relative to the peptide.
    Type: Application
    Filed: May 14, 2021
    Publication date: June 1, 2023
    Applicant: University of Southern California
    Inventors: Pinchas Cohen, Kelvin Yen, Su-Jeong Kim
  • Publication number: 20210371479
    Abstract: Described herein is a novel, mitochondrial encoded, open reading frame, that leads to the production of a new mitochondrial peptide. Residing within the ND-Two subunit, a specific small nucleotide polymorphism disrupts expression of this mitochondrial peptide, and is correlated with an increase in obesity and diabetes, particularly in certain ethnic populations. In vitro administration of the peptide increases insulin secretion, decreases fat accumulation and improves glucose uptake in muscle cell. Antibodies generated against the peptide can be used for detecting peptide deficiency, in addition to SNP detection, supporting diagnostic approaches. In vivo studies further revealed that administration of the peptide improves glucose tolerance, thereby providing a new therapeutic avenue for a novel diabetes therapy and decreases bodyweight, thus serving as a novel obesity therapy. Generation of synthetic analogs further enhance or abrogated activity relative to the natural peptide.
    Type: Application
    Filed: August 4, 2021
    Publication date: December 2, 2021
    Applicant: University of Southern California
    Inventors: Pinchas COHEN, Kelvin YEN
  • Patent number: 11124551
    Abstract: Described herein is a novel, mitochondrial encoded, open reading frame, that leads to the production of a new mitochondrial peptide. Residing within the ND-Two subunit, a specific small nucleotide polymorphism disrupts expression of this mitochondrial peptide, and is correlated with an increase in obesity and diabetes, particularly in certain ethnic populations. In vitro administration of the peptide increases insulin secretion, decreases fat accumulation and improves glucose uptake in muscle cell. Antibodies generated against the peptide can be used for detecting peptide deficiency, in addition to SNP detection, supporting diagnostic approaches. In vivo studies further revealed that administration of the peptide improves glucose tolerance, thereby providing a new therapeutic avenue for a novel diabetes therapy and decreases bodyweight, thus serving as a novel obesity therapy. Generation of synthetic analogs further enhance or abrogated activity relative to the natural peptide.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: September 21, 2021
    Assignee: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Pinchas Cohen, Kelvin Yen
  • Publication number: 20190194275
    Abstract: Described herein is a novel, mitochondrial encoded, open reading frame, that leads to the production of a new mitochondrial peptide. Residing within the ND-Two subunit, a specific small nucleotide polymorphism disrupts expression of this mitochondrial peptide, and is correlated with an increase in obesity and diabetes, particularly in certain ethnic populations. In vitro administration of the peptide increases insulin secretion, decreases fat accumulation and improves glucose uptake in muscle cell. Antibodies generated against the peptide can be used for detecting peptide deficiency, in addition to SNP detection, supporting diagnostic approaches. In vivo studies further revealed that administration of the peptide improves glucose tolerance, thereby providing a new therapeutic avenue for a novel diabetes therapy and decreases bodyweight, thus serving as a novel obesity therapy. Generation of synthetic analogs further enhance or abrogated activity relative to the natural peptide.
    Type: Application
    Filed: June 23, 2017
    Publication date: June 27, 2019
    Applicant: University of Southern California
    Inventors: Pinchas Cohen, Kelvin Yen
  • Patent number: 10017848
    Abstract: A crucible includes a tank and an inner cover. The tank has a cavity. The inner cover is disposed in the cavity of the tank and has a first bottom surface and at least one hole. The first bottom surface faces a bottom of the tank and protrudes toward the bottom of the tank. A vertical distance between the bottom of the tank and the first bottom surface of the inner cover is gradually decreased from an edge toward a center of the first bottom surface.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: July 10, 2018
    Assignee: AU OPTRONICS CORPORATION
    Inventor: Kelvin Yen-Kuang Tan
  • Publication number: 20180100230
    Abstract: A crucible includes a tank and an inner cover. The tank has a cavity. The inner cover is disposed in the cavity of the tank and has a first bottom surface and at least one hole. The first bottom surface faces a bottom of the tank and protrudes toward the bottom of the tank. A vertical distance between the bottom of the tank and the first bottom surface of the inner cover is gradually decreased from an edge toward a center of the first bottom surface.
    Type: Application
    Filed: April 19, 2017
    Publication date: April 12, 2018
    Inventor: Kelvin Yen-Kuang TAN