Patents by Inventor Kemiao Jia

Kemiao Jia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240300808
    Abstract: Described herein are manufacturing techniques for achieving stress isolation in microelectromechanical systems (MEMS) devices that involve isolation trenches formed from the backside of the substrate. The techniques described herein involve etching a trench in the bottom side of the substrate subsequent to forming a MEMS platform, and processing the MEMS platform to form a MEMS device on the top side of the substrate subsequent to etching the trench.
    Type: Application
    Filed: March 5, 2024
    Publication date: September 12, 2024
    Applicant: Analog Devices, Inc.
    Inventors: Kemiao Jia, Gaurav Vohra, Xin Zhang, Christine H. Tsau, Chen Yang, Andrew Proudman, Matthew Kent Emsley, George M. Molnar, II, Nikolay Pokrovskiy, Ali Mohammed Shakir, Michael Judy
  • Patent number: 11892467
    Abstract: A microelectromechanical systems (MEMS) accelerometer is provided, comprising a substrate disposed in a plane defined by a first axis and a second axis perpendicular to the first axis; a first proof mass and a second proof mass coupled to the substrate and configured to translate in opposite directions of each other along a third axis perpendicular to the first and second axes; and at least one lever coupling the first proof mass to the second proof mass, wherein, the MEMS accelerometer is configured to detect acceleration along the third axis via detection of translation of the first and second proof masses along the third axis; and the MEMS accelerometer exhibits symmetry about the first and second axes.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: February 6, 2024
    Assignee: Analog Devices, Inc.
    Inventors: Kemiao Jia, Xin Zhang, Michael Judy
  • Patent number: 11774244
    Abstract: Columnar multi-axis microelectromechanical systems (MEMS) devices (such as gyroscopes) balanced against undesired linear and angular vibration are described herein. In some embodiments, the columnar MEMS device may comprise at least two multiple-mass columns, each having at least three proof masses and being configured to sense rotation about a respective axis. The motion and mass of the proof masses may be controlled to achieve linear and rotational balancing of the MEMS device. The columnar MEMS device may further comprise one or more modular drive structures disposed alongside each multiple-mass column to facilitate displacement of the proof masses of a respective column. The MEMS devices described herein may be used to sense roll, yaw, and pitch angular rates.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: October 3, 2023
    Assignee: Analog Devices, Inc.
    Inventors: Jeffrey A. Gregory, Charles Blackmer, Tyler Adam Dunn, Eugene Oh Hwang, Jinbo Kuang, Kemiao Jia, Laura Cornelia Popa, Igor P. Prikhodko, Erdinc Tatar
  • Patent number: 11614541
    Abstract: This disclosure describes techniques for operating a lidar device. The techniques include emitting light resulting in a plurality of non-parallel laser beam waves; directing the plurality of non-parallel laser beam waves towards a laser beam scanner; reflecting the non-parallel plurality of beam waves by the laser beam scanner towards a collimator device; collimating, with the collimator device, the plurality of non-parallel laser beam waves reflected by the laser beam scanner into a corresponding plurality of parallel plane waves; and directing the plurality of plane waves from the collimator device towards a field of interest.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: March 28, 2023
    Assignee: Analog Devices, Inc.
    Inventor: Kemiao Jia
  • Publication number: 20220196699
    Abstract: A microelectromechanical systems (MEMS) accelerometer is provided, comprising a substrate disposed in a plane defined by a first axis and a second axis perpendicular to the first axis; a first proof mass and a second proof mass coupled to the substrate and configured to translate in opposite directions of each other along a third axis perpendicular to the first and second axes; and at least one lever coupling the first proof mass to the second proof mass, wherein, the MEMS accelerometer is configured to detect acceleration along the third axis via detection of translation of the first and second proof masses along the third axis; and the MEMS accelerometer exhibits symmetry about the first and second axes.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 23, 2022
    Applicant: Analog Devices, Inc.
    Inventors: Kemiao Jia, Xin Zhang, Michael Judy
  • Publication number: 20220057210
    Abstract: Columnar multi-axis microelectromechanical systems (MEMS) devices (such as gyroscopes) balanced against undesired linear and angular vibration are described herein. In some embodiments, the columnar MEMS device may comprise at least two multiple-mass columns, each having at least three proof masses and being configured to sense rotation about a respective axis. The motion and mass of the proof masses may be controlled to achieve linear and rotational balancing of the MEMS device. The columnar MEMS device may further comprise one or more modular drive structures disposed alongside each multiple-mass column to facilitate displacement of the proof masses of a respective column. The MEMS devices described herein may be used to sense roll, yaw, and pitch angular rates.
    Type: Application
    Filed: October 29, 2021
    Publication date: February 24, 2022
    Applicant: Analog Devices, Inc.
    Inventors: Jeffrey A. Gregory, Charles Blackmer, Tyler Adam Dunn, Eugene Oh Hwang, Jinbo Kuang, Kemiao Jia, Laura Cornelia Popa, Igor P. Prikhodko, Erdinc Tatar
  • Publication number: 20210381834
    Abstract: Columnar multi-axis microelectromechanical systems (MEMS) devices (such as gyroscopes) balanced against undesired linear and angular vibration are described herein. In some embodiments, the columnar MEMS device may comprise at least two multiple-mass columns, each having at least three proof masses and being configured to sense rotation about a respective axis. The motion and mass of the proof masses may be controlled to achieve linear and rotational balancing of the MEMS device. The columnar MEMS device may further comprise one or more modular drive structures disposed alongside each multiple-mass column to facilitate displacement of the proof masses of a respective column. The MEMS devices described herein may be used to sense roll, yaw, and pitch angular rates.
    Type: Application
    Filed: June 5, 2020
    Publication date: December 9, 2021
    Applicant: Analog Devices, Inc.
    Inventors: Jeffrey A. Gregory, Charles Blackmer, Tyler Adam Dunn, Eugene Oh Hwang, Jinbo Kuang, Kemiao Jia, Laura Cornelia Popa, Igor P. Prikhodko, Erdinc Tatar
  • Patent number: 11193771
    Abstract: Columnar multi-axis microelectromechanical systems (MEMS) devices (such as gyroscopes) balanced against undesired linear and angular vibration are described herein. In some embodiments, the columnar MEMS device may comprise at least two multiple-mass columns, each having at least three proof masses and being configured to sense rotation about a respective axis. The motion and mass of the proof masses may be controlled to achieve linear and rotational balancing of the MEMS device. The columnar MEMS device may further comprise one or more modular drive structures disposed alongside each multiple-mass column to facilitate displacement of the proof masses of a respective column. The MEMS devices described herein may be used to sense roll, yaw, and pitch angular rates.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: December 7, 2021
    Assignee: Analog Devices, Inc.
    Inventors: Jeffrey A. Gregory, Charles Blackmer, Tyler Adam Dunn, Eugene Oh Hwang, Jinbo Kuang, Kemiao Jia, Laura Cornelia Popa, Igor P. Prikhodko, Erdinc Tatar
  • Publication number: 20210080584
    Abstract: This disclosure describes techniques for operating a lidar device. The techniques include emitting light resulting in a plurality of non-parallel laser beam waves; directing the plurality of non-parallel laser beam waves towards a laser beam scanner; reflecting the non-parallel plurality of beam waves by the laser beam scanner towards a collimator device; collimating, with the collimator device, the plurality of non-parallel laser beam waves reflected by the laser beam scanner into a corresponding plurality of parallel plane waves; and directing the plurality of plane waves from the collimator device towards a field of interest.
    Type: Application
    Filed: September 13, 2019
    Publication date: March 18, 2021
    Inventor: Kemiao Jia
  • Patent number: 10759659
    Abstract: A MEMS product includes a stress-isolated MEMS platform surrounded by a stress-relief gap and suspended from a substrate. The stress-relief gap provides a barrier against the transmission of mechanical stress from the substrate to the platform.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: September 1, 2020
    Assignee: Analog Devices, Inc.
    Inventors: Xin Zhang, Michael Judy, George M. Molnar, Christopher Needham, Kemiao Jia
  • Patent number: 10514259
    Abstract: A two-axis microelectromechanical systems (MEMS) gyroscope having four proof masses disposed in respective quadrants of a plane is described. The quad proof mass gyroscope may comprise an inner coupler passing between a first and a third proof mass and between a second and a fourth proof mass, and coupling the four proof masses with one another. The quad proof mass gyroscope may further comprising a first outer coupler coupling the first and the second proof masses and a second outer coupler coupling the third and the fourth proof masses. The outer couplers may have masses configured to balance the center of masses of the four proof masses, and may have elastic constants matching the elastic constant of the inner coupler. The quad gyroscope may further comprise a plurality of sense capacitors configured to sense angular rates.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: December 24, 2019
    Assignee: Analog Devices, Inc.
    Inventors: Kemiao Jia, Xin Zhang, Jianglong Zhang, Jinbo Kuang
  • Publication number: 20190047846
    Abstract: A MEMS product includes a stress-isolated MEMS platform surrounded by a stress-relief gap and suspended from a substrate. The stress-relief gap provides a barrier against the transmission of mechanical stress from the substrate to the platform.
    Type: Application
    Filed: October 15, 2018
    Publication date: February 14, 2019
    Applicant: Analog Devices, Inc.
    Inventors: Xin Zhang, Michael Judy, George M. Molnar, Christopher Needham, Kemiao Jia
  • Patent number: 10167189
    Abstract: A MEMS product includes a stress-isolated MEMS platform surrounded by a stress-relief gap and suspended from a substrate. The stress-relief gap provides a barrier against the transmission of mechanical stress from the substrate to the platform.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: January 1, 2019
    Assignee: Analog Devices, Inc.
    Inventors: Xin Zhang, Michael W. Judy, George M. Molnar, Christopher Needham, Kemiao Jia
  • Patent number: 10131538
    Abstract: A MEMS device has a substrate with a structure surface and an opposing exterior surface, microstructure formed on the structure surface of the substrate, and a cap coupled with the substrate to form a hermetically sealed interior chamber containing the microstructure. The substrate forms a trench extending from, and being open to, the opposing exterior surface to produce a sensor region and a second region. Specifically, the second region is radially outward of the sensor region. The MEMS device also has a spring integrally formed at least in part within the trench to mechanically connect the sensor region and the second region, and other structure integral with the substrate. The spring or the other structure at least in part hermetically seal the interior chamber.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: November 20, 2018
    Assignee: Analog Devices, Inc.
    Inventors: Bradley C. Kaanta, Kemiao Jia
  • Publication number: 20180058853
    Abstract: A two-axis microelectromechanical systems (MEMS) gyroscope having four proof masses disposed in respective quadrants of a plane is described. The quad proof mass gyroscope may comprise an inner coupler passing between a first and a third proof mass and between a second and a fourth proof mass, and coupling the four proof masses with one another. The quad proof mass gyroscope may further comprising a first outer coupler coupling the first and the second proof masses and a second outer coupler coupling the third and the fourth proof masses. The outer couplers may have masses configured to balance the center of masses of the four proof masses, and may have elastic constants matching the elastic constant of the inner coupler. The quad gyroscope may further comprise a plurality of sense capacitors configured to sense angular rates.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 1, 2018
    Applicant: Analog Devices, Inc.
    Inventors: Kemiao Jia, Xin Zhang, Jianglong Zhang, Jinbo Kuang
  • Publication number: 20170073218
    Abstract: A MEMS device has a substrate with a structure surface and an opposing exterior surface, microstructure formed on the structure surface of the substrate, and a cap coupled with the substrate to form a hermetically sealed interior chamber containing the microstructure. The substrate forms a trench extending from, and being open to, the opposing exterior surface to produce a sensor region and a second region. Specifically, the second region is radially outward of the sensor region. The MEMS device also has a spring integrally formed at least in part within the trench to mechanically connect the sensor region and the second region, and other structure integral with the substrate. The spring or the other structure at least in part hermetically seal the interior chamber.
    Type: Application
    Filed: September 14, 2015
    Publication date: March 16, 2017
    Inventors: Bradley C. Kaanta, Kemiao Jia
  • Publication number: 20160229689
    Abstract: A packaged microchip has a base, a die with a mounting surface, and an electrically inactive interposer between the base and the die. The interposer has a first side with at least one recess that extends no more than part-way through the interposer from the first side. Accordingly, the recess defines a top portion (of the first side) with a top area. The die mounting surface, which is coupled with the interposer, correspondingly has a die area. The top area of the interposer preferably is less than the die area.
    Type: Application
    Filed: January 22, 2016
    Publication date: August 11, 2016
    Inventors: Bradley C. Kaanta, John A. Alberghini, Kemiao Jia
  • Patent number: 9360319
    Abstract: A gyroscope includes a first drive mass driven in a first drive motion along a first axis, the first drive motion generating a first sense motion of a first sense mass in response to rotation of the gyroscope. The gyroscope further includes a second drive mass driven in a second drive motion along a second axis that is transverse to the first axis. The second drive motion generates a second sense motion of a second sense mass in response to rotation of the gyroscope. A drive spring system interconnects the two drive masses to couple the first and second drive motions so that a single drive mode can be implemented. The sense motion of each sense mass is along a third axis, where the third axis is transverse to the other axes. The sense motion is translational motion such the sense masses remain parallel to the surface of the substrate.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: June 7, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Kemiao Jia
  • Patent number: 9316665
    Abstract: An apparatus (36) includes a motion amplification structure (52), an actuator (54), and a sense electrode (50) in proximity to the structure (52). The actuator (54) induces an axial force (88) upon the structure (52), which causes a relatively large amount of in-plane motion (108) in one or more beams (58, 60) of the structure (52). When sidewalls (98) of the beams (58, 60) exhibit a skew angle (28), the in-plane motion (108) of the beams (58, 60) produces out-of-plane motion (110) of a paddle element (62) connected to the end of the beams (58, 60). The skew angle (28), which results from an etch process, defines a degree to which the sidewalls (98) of beams (58, 60) are offset or tilted from their design orientation. The out-of-plane motion (110) of element (62) is sensed at the electrode (50), and is utilized to determine an estimated skew angle (126).
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: April 19, 2016
    Assignee: FREESCALE SEMICONDCUTOR, INC.
    Inventors: Aaron A. Geisberger, Kemiao Jia
  • Publication number: 20160090297
    Abstract: A MEMS product includes a stress-isolated MEMS platform surrounded by a stress-relief gap and suspended from a substrate. The stress-relief gap provides a barrier against the transmission of mechanical stress from the substrate to the platform.
    Type: Application
    Filed: September 30, 2014
    Publication date: March 31, 2016
    Inventors: Xin Zhang, Michael W. Judy, George M. Molnar, Christopher R. Needham, Kemiao Jia