Patents by Inventor Ken G. Wasson

Ken G. Wasson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8471425
    Abstract: Various embodiments relate generally to electrodynamic machines and the like, and more particularly, to rotor assemblies and rotor-stator structures for electrodynamic machines, including, but not limited to, outer rotor assemblies and/or inner rotor assemblies with a corresponding stator assembly. In some embodiments a rotor assembly can include magnetically permeable structures having confronting surfaces oriented at an angle to the axis of rotation. A group of magnetic structures can be interleaved with the magnetically permeable structures. The magnetically permeable structures can also include non-confronting surfaces adjacent to which boost magnets are disposed to enhance flux in a flux path passing through magnetic structures that are interleaved with magnetically permeable structures. Further, the rotor assemblies can include a flux conductor shield disposed adjacent to the boost magnets, the flux conductor shield configured to provide return flux paths.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: June 25, 2013
    Assignee: NovaTorque, Inc.
    Inventors: John P. Petro, Ken G. Wasson, Donald Burch, Jeremy Mayer, Michael Regalbuto
  • Patent number: 8330316
    Abstract: Various embodiments relate generally to electrodynamic machines and the like, and more particularly, to rotor assemblies and rotor-stator structures for electrodynamic machines, including, but not limited to, outer rotor assemblies. In some embodiments, a stator assembly including field pole members arranged about an axis of rotation and including pole faces at the ends of the field pole members, subsets of the pole faces being disposed within a boundaries of conically-shaped spaces having apexes disposed on the axis of rotation. The rotor assemblies include interior regions in which the subsets of the pole faces are disposed, the interior regions having surfaces external to the boundaries of the conically-shaped spaces. The rotor assemblies also include subsets of magnets interleaved circumferentially with the subsets of magnetically permeable structures and boost magnets disposed adjacent the subsets of magnetically permeable structures.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: December 11, 2012
    Assignee: NovaTorque, Inc.
    Inventors: John P. Petro, Ken G. Wasson, Donald Burch, Jeremy Mayer, Michael Regalbuto
  • Publication number: 20120248917
    Abstract: Embodiments of the invention relate generally to electric motors, alternators, generators and the like, and more particularly, to stator structures and rotor-stator structures for motors that can be configured to, for example, reduce detent.
    Type: Application
    Filed: December 5, 2011
    Publication date: October 4, 2012
    Applicant: NovaTorque, Inc.
    Inventors: John Petro, Ken G. Wasson, Jeremy F. Mayer
  • Publication number: 20120228978
    Abstract: Various embodiments relate generally to electrodynamic machines and the like, and more particularly, to rotor assemblies and rotor-stator structures for electrodynamic machines, including, but not limited to, outer rotor assemblies and/or inner rotor assemblies with a corresponding stator assembly. In some embodiments a rotor assembly can include magnetically permeable structures having confronting surfaces oriented at an angle to the axis of rotation. A group of magnetic structures can be interleaved with the magnetically permeable structures. The magnetically permeable structures can also include non-confronting surfaces adjacent to which boost magnets are disposed to enhance flux in a flux path passing through magnetic structures that are interleaved with magnetically permeable structures. Further, the rotor assemblies can include a flux conductor shield disposed adjacent to the boost magnets, the flux conductor shield configured to provide return flux paths.
    Type: Application
    Filed: March 9, 2011
    Publication date: September 13, 2012
    Applicant: Nova Torque, Inc.
    Inventors: John P. Petro, Ken G. Wasson, Donald Burch, Jeremy Mayer, Michael Regalbuto
  • Publication number: 20120228976
    Abstract: Various embodiments relate generally to electrodynamic machines and the like, and more particularly, to rotor assemblies and rotor-stator structures for electrodynamic machines, including, but not limited to, outer rotor assemblies. In some embodiments, a stator assembly including field pole members arranged about an axis of rotation and including pole faces at the ends of the field pole members, subsets of the pole faces being disposed within a boundaries of conically-shaped spaces having apexes disposed on the axis of rotation. The rotor assemblies include interior regions in which the subsets of the pole faces are disposed, the interior regions having surfaces external to the boundaries of the conically-shaped spaces. The rotor assemblies also include subsets of magnets interleaved circumferentially with the subsets of magnetically permeable structures and boost magnets disposed adjacent the subsets of magnetically permeable structures.
    Type: Application
    Filed: March 9, 2011
    Publication date: September 13, 2012
    Applicant: Nova Torque, Inc.
    Inventors: John P. Petro, Ken G. Wasson, Donald Burch, Jeremy Mayer, Michael Regalbuto
  • Publication number: 20120228979
    Abstract: Embodiments of various rotor assemblies can include an arrangement of magnetically permeable structures including confronting surfaces oriented at an angle to the centerline, and different subsets of non-confronting surfaces. Different magnets can be disposed adjacent to the different subsets of non-confronting subsets. For example, one type of magnet lies is a flux path or a flux path portion passing through one subset of non-confronting surfaces, and another type of magnet is external to the flux path adjacent to another subset of non-confronting surfaces and is configured to boost the flux associated with the flux path (or a portion thereof). In some embodiments, the magnetic region can include a portion of the internal permanent magnet. One example of a rotor assembly is an outer rotor assembly.
    Type: Application
    Filed: March 9, 2011
    Publication date: September 13, 2012
    Applicant: NovaTorque, Inc.
    Inventors: John P. Petro, Ken G. Wasson, Donald Burch, Jeremy Mayer, Michael Regalbuto
  • Publication number: 20120228977
    Abstract: Various embodiments relate generally to electrodynamic machines and the like, and more particularly, to rotor assemblies and rotor-stator structures for electrodynamic machines, including, but not limited to, outer rotor assemblies and/or inner rotor assemblies. In some embodiments, a rotor-stator structure includes a rotor structure in which rotor assemblies are arranged on an axis of rotation. A rotor assembly can include an arrangement of magnetic regions each having a portion of a surface that is oriented substantially at an angle to the axis and disposed externally to, for example, a portion of a conically-shaped space centered on the axis of rotation. The rotor-stator structure also can include pole members (e.g., field pole members) having pole faces. A subset of the pole faces can be positioned to confront the arrangement of the magnetic regions to establish air gaps, with the subset of the pole faces being disposed internally to the conically-shaped space.
    Type: Application
    Filed: March 9, 2011
    Publication date: September 13, 2012
    Applicant: Nova Torque, Inc.
    Inventors: John P. Petro, Ken G. Wasson, Donald Burch, Jeremy Mayer, Michael Regalbuto
  • Patent number: 8072106
    Abstract: Embodiments of the invention relate generally to electric motors, alternators, generators and the like, and more particularly, to stator structures and rotor-stator structures for motors that can be configured to, for example, reduce detent.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: December 6, 2011
    Assignee: Novatorque, Inc.
    Inventors: John Petro, Ken G. Wasson, Jeremy F. Mayer
  • Publication number: 20110234037
    Abstract: Embodiments of the invention relate generally to electric motors, alternators, generators and the like, and more particularly, to stator structures and rotor-stator structures for motors that can be configured to, for example, reduce detent.
    Type: Application
    Filed: January 14, 2011
    Publication date: September 29, 2011
    Applicant: Nova Torque, Inc.
    Inventors: John Petro, Ken G. Wasson, Jeremy F. Mayer
  • Patent number: 7884522
    Abstract: Embodiments of the invention relate generally to electric motors, alternators, generators and the like, and more particularly, to stator structures and rotor-stator structures for motors that can be configured to, for example, reduce detent.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: February 8, 2011
    Assignee: NovaTorque, Inc.
    Inventors: John Petro, Ken G. Wasson, Jeremy F. Mayer
  • Publication number: 20090237761
    Abstract: A method and apparatus particularly useful for telecommunications applications, such as switching (Add/Drop), multiplexing and demultiplexing, is disclosed. The method commences by directing a source of input optical signal(s) (10) onto a movable diffractive optical element or MDOE. Each of the optical signals is associated with a particular wavelength. Next, one or more output stations are supplied. Finally, the MDOE generates and distributes output optical signals among the output station(s). The corresponding system for treating the optical signals from a source thereof includes a source carrying two or more input optical signals, each of the signals being associated with a particular wavelength. Also included is a movable diffractive optical element positioned to intercept the source optical signals for producing and distributing one or more diffracted output optical signals. Finally, one or more output stations are positioned to receive the diffracted optical signal(s) from the MDOE.
    Type: Application
    Filed: May 29, 2009
    Publication date: September 24, 2009
    Inventors: Jefferson E. Odhner, Eliott S. Luckoff, Donald L. Cullen, Ken G. Wasson
  • Patent number: 6898009
    Abstract: The present invention is directed to an improvement in a diffractive display suitable for presenting graphic and the like displays. Broadly, a novel embodiment is realized from a holographic diffraction pattern carried by a magnet or element and an electrically energizable coil magnetically coupled with said magnet that is energizable for movement of the magnet. Rotation of the holographic diffraction pattern generates a display using the diffracted light from the holographic diffraction grating. Another novel embodiment is realized from a faceted rotatable element (FRE) having an array of facets each bearing a diffraction grating and a source energizable for rotation of the FRE from a resting station to a viewing station. Rotation of the FRE generates a display using the diffracted light from the diffraction gratings.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: May 24, 2005
    Assignee: Luckoff Display Corporation
    Inventors: Jefferson E. Odhner, Donald L. Cullen, Ken G. Wasson, James E. Dvorsky
  • Publication number: 20040017597
    Abstract: The present invention is directed to an improvement in a diffractive display suitable for presenting graphic and the like displays. Broadly, a novel embodiment is realized from a holographic diffraction pattern carried by a magnet or element and an electrically energizable coil magnetically coupled with said magnet that is energizable for movement of the magnet. Rotation of the holographic diffraction pattern generates a display using the diffracted light from the holographic diffraction grating. Another novel embodiment is realized from a faceted rotatable element (FRE) having an array of facets each bearing a diffraction grating and a source energizable for rotation of the FRE from a resting station to a viewing station. Rotation of the FRE generates a display using the diffracted light from the diffraction gratings.
    Type: Application
    Filed: July 17, 2003
    Publication date: January 29, 2004
    Inventors: Jefferson E. Odhner, Donald L. Cullen, Ken G. Wasson, James E. Dvorsky
  • Patent number: 6621607
    Abstract: The present invention is directed to an improvement in a diffractive display suitable for presenting graphic and the like displays. Broadly, a novel embodiment is realized from a holographic diffraction pattern carried by a magnet or element and an electrically energizable coil magnetically coupled with said magnet that is energizable for movement of the magnet. Rotation of the holographic diffraction pattern generates a display using the diffracted light from the holographic diffraction grating. Another novel embodiment is realized from a faceted rotatable element (FRE) having an array of facets each bearing a diffraction grating and a source energizable for rotation of the FRE from a resting station to a viewing station. Rotation of the FRE generates a display using the diffracted light from the diffraction gratings.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: September 16, 2003
    Assignee: Luckoff Display Corporation
    Inventors: Jefferson E. Odhner, Donald L. Cullen, Ken G. Wasson, James E. Dvorsky
  • Publication number: 20010033419
    Abstract: A method and apparatus particularly useful for telecommunications applications, such as switching (Add/Drop), multiplexing and demultiplexing, is disclosed. The method commences by directing a source of input optical signal(s) (10) onto a movable diffractive optical element or MDOE. Each of the optical signals is associated with a particular wavelength. Next, one or more output stations are supplied. Finally, the MDOE generates and distributes output optical signals among the output station(s). The corresponding system for treating the optical signals from a source thereof includes a source carrying two or more input optical signals, each of the signals being associated with a particular wavelength. Also included is a movable diffractive optical element positioned to intercept the source optical signals for producing and distributing one or more diffracted output optical signals. Finally, one or more output stations are positioned to receive the diffracted optical signal(s) from the MDOE.
    Type: Application
    Filed: April 17, 2001
    Publication date: October 25, 2001
    Inventors: Jefferson E. Odhner, Elliott S. Luckoff, Donald L. Cullen, Ken G. Wasson
  • Patent number: 6278203
    Abstract: Apparatus and associated method for cooling a linear motor coil includes a motor coil having side walls, and at least one enclosure member which encloses each linear side wall and extends generally co-extensively with a width and a length of the side walls and juxtaposed to the side walls. Coolant passages are formed between and around an exterior of the side walls and the interior walls of at least one enclosure member for enclosing a coolant fluid flowable against the side walls. An inlet plenum is in flow connection to the coolant passages for flowing the coolant fluid through the coolant passages to cool the side walls and an outlet plenum is in flow connection to the coolant passages for removal of coolant fluid heated by operation of the motor coil.
    Type: Grant
    Filed: November 22, 1999
    Date of Patent: August 21, 2001
    Assignee: Nikon Corporation
    Inventors: W. Thomas Novak, Andrew J. Hazelton, Ken G. Wasson
  • Patent number: 6198605
    Abstract: Narrow gaps near the end of travel of a linear actuator coil of a magnetic disk drive is disclosed. The gaps are formed between actuator magnets and inner return path members on opposing sides of an actuator carriage. The narrow gaps are formed by protrusions on the inner return path members that extend into the gaps. The narrow gaps enhance uniformity of force applied to the carriage by diminishing the end effects, which enables the entire length of the air gap to be used for actuator travel.
    Type: Grant
    Filed: November 20, 1998
    Date of Patent: March 6, 2001
    Assignee: Iomega Corporation
    Inventors: John C. Briggs, Ken G. Wasson
  • Patent number: 6163091
    Abstract: A linear motor supplying a nearly constant force along its entire length is presented. The linear motor includes two parallel magnet arrays having magnet strips of alternating magnetic polarity positioned along the length of the motor. A three-phase commutation coil is attached to a center pole such that individual coils are wrapped around the center pole. In some embodiments, the center pole runs the length of the motor and the three-phase commutation coil slides on the center pole. In other embodiments, the center pole is attached to the coils. The three-phase commutation coil includes any number of sets of three coils, each coil in the set carrying one of the three phases of current. A driver supplies three phases of current to the three-phase commutation coil in response to the position of the three-phase commutation coil relative to the magnet arrays.
    Type: Grant
    Filed: July 6, 1999
    Date of Patent: December 19, 2000
    Assignee: Nikon Corporation
    Inventors: Ken G. Wasson, Andrew J. Hazelton
  • Patent number: 5905607
    Abstract: Narrow gaps near the end of travel of a linear actuator coil of a magnetic disk drive is disclosed. The gaps are formed between actuator magnets and inner return path members on opposing sides of an actuator carriage. The narrow gaps are formed by protrusions on the inner return path members that extend into the gaps. The narrow gaps enhance uniformity of force applied to the carriage by diminishing the end effects, which enables the entire length of the air gap to be used for actuator travel.
    Type: Grant
    Filed: May 30, 1997
    Date of Patent: May 18, 1999
    Assignee: Iomega Corporation
    Inventors: John C. Briggs, Ken G. Wasson
  • Patent number: 5613022
    Abstract: The present invention is directed to a diffractive display suitable for presenting graphic and the like displays. Broadly, the novel display is realized from a diffraction pattern (132) carried by (e.g. embossed) a film or element (138) connected to an energy source which is energizable for movement of the film (138). Movement of the patterned film (138) generates a display using the diffracted light from the embossed pattern (132). Electroactive films are known in the art, including, for example, piezoelectric films, electrostrictive films, electromotive films, and electrostatic films. Magnetoactive films also are known in the art. Any of these films (138) can carry the diffraction pattern (132) and be energized for movement to generate from the resulting diffracted light.
    Type: Grant
    Filed: March 13, 1995
    Date of Patent: March 18, 1997
    Assignee: Luckoff Display Corporation
    Inventors: Jefferson E. Odhner, Daniel J. Smith, Shailesh S. Bhat, Donald L. Cullen, Ken G. Wasson