Patents by Inventor Ken J. Hayworth

Ken J. Hayworth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7437253
    Abstract: Parametrically disciplined operation of a symmetric nearly degenerate mode vibratory gyroscope is disclosed. A parametrically-disciplined inertial wave gyroscope having a natural oscillation frequency in the neighborhood of a sub-harmonic of an external stable clock reference is produced by driving an electrostatic bias electrode at approximately twice this sub-harmonic frequency to achieve disciplined frequency and phase operation of the resonator. A nearly symmetric parametrically-disciplined inertial wave gyroscope that can oscillate in any transverse direction and has more than one bias electrostatic electrode that can be independently driven at twice its oscillation frequency at an amplitude and phase that disciplines its damping to zero in any vibration direction. In addition, operation of a parametrically-disciplined inertial wave gyroscope is taught in which the precession rate of the driven vibration pattern is digitally disciplined to a prescribed non-zero reference value.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: October 14, 2008
    Assignees: The Boeing Company, California Institute of Technology
    Inventors: Kirill V. Shcheglov, Ken J. Hayworth, A. Dorian Challoner, Chris S. Peay
  • Patent number: 7396478
    Abstract: A Multiple Internal Seal Ring (MISR) Micro-Electro-Mechanical System (MEMS) vacuum packaging method that hermetically seals MEMS devices using MISR. The method bonds a capping plate having metal seal rings to a base plate having metal seal rings by wafer bonding the capping plate wafer to the base plate wafer. Bulk electrodes may be used to provide conductive paths between the seal rings on the base plate and the capping plate. All seals are made using only metal-to-metal seal rings deposited on the polished surfaces of the base plate and capping plate wafers. However, multiple electrical feed-through metal traces are provided by fabricating via holes through the capping plate for electrical connection from the outside of the package through the via-holes to the inside of the package. Each metal seal ring serves the dual purposes of hermetic sealing and providing the electrical feed-through metal trace.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: July 8, 2008
    Assignees: California Institute of Technology, The Boeing Company
    Inventors: Ken J. Hayworth, Karl Y. Yee, Kirill V. Shcheglov, Youngsam Bae, Dean V. Wiberg, A. Dorian Challoner, Chris S. Peay
  • Patent number: 7347095
    Abstract: The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: March 25, 2008
    Assignees: The Boeing Company, California Institute of Technology
    Inventors: Kirill V. Shcheglov, A. Dorian Challoner, Ken J. Hayworth, Dean V. Wiberg, Karl Y. Yee
  • Patent number: 7285844
    Abstract: A Multiple Internal Seal Ring (MISR) Micro-Electro-Mechanical System (MEMS) vacuum package that hermetically seals MEMS devices using MISR. The method bonds a capping plate having metal seal rings to a base plate having metal seal rings by wafer bonding the capping plate wafer to the base plate wafer. Bulk electrodes may be used to provide conductive paths between the seal rings on the base plate and the capping plate. All seals are made using only metal-to-metal seal rings deposited on the polished surfaces of the base plate and capping plate wafers. However, multiple electrical feed-through metal traces are provided by fabricating via holes through the capping plate for electrical connection from the outside of the package through the via-holes to the inside of the package. Each metal seal ring serves the dual purposes of hermetic sealing and providing the electrical feed-through metal trace.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: October 23, 2007
    Assignees: California Institute of Technology, The Boeing Company
    Inventors: Ken J. Hayworth, Karl Y. Yee, Kirill V. Shcheglov, Youngsam Bae, Dean V. Wiberg, A. Dorian Challoner, Chris S. Peay
  • Patent number: 6944931
    Abstract: The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.
    Type: Grant
    Filed: August 12, 2003
    Date of Patent: September 20, 2005
    Assignees: The Boeing Company, California Institute of Technology
    Inventors: Kirill V. Shcheglov, A. Dorian Challoner, Ken J. Hayworth, Dean V. Wiberg, Karl Y. Yee
  • Patent number: 6915215
    Abstract: Embodiments of the invention generally encompass a digital, application specific integrated circuit (ASIC) has been designed to perform excitation of a selected mode within a vibratory rate gyroscope, damping, or “force-rebalance,” of other modes within the sensor, and signal demodulation of the in-phase and quadrature components of the signal containing the angular rate information. The ASIC filters dedicated to each channel may be individually programmed to accommodate different rate sensor designs/technology or variations within the same class of sensors. The ASIC architecture employs a low-power design, making the ASIC, particularly suitable for use in power-sensitive applications.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: July 5, 2005
    Assignees: The Boeing Company, California Institute of Technology, The Regents of the University of California
    Inventors: Robert M'Closkey, A. Dorian Challoner, Eugene Grayver, Ken J. Hayworth
  • Patent number: 6823734
    Abstract: The present invention discloses an isolated electrostatic biased resonator gyroscope. The gyroscope includes an isolated resonator having a first and a second differential vibration mode, a baseplate supporting the isolated resonator, a plurality of excitation affixed to the baseplate for exciting the first differential vibration mode, a plurality of sensing electrodes affixed to the baseplate for sensing movement of the gyroscope through the second differential vibration mode and a plurality of bias electrodes affixed to the baseplate for trimming isolation of the resonator and substantially minimizing frequency split between the first and second differential vibration modes. Typically, the isolated resonator comprises a proof mass and a counterbalancing plate with the bias electrodes disposed on the baseplate below.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: November 30, 2004
    Assignees: California Institute of Technology, The Boeing Company
    Inventors: Ken J. Hayworth, Kirill V. Shcheglov, Todd E. Humphreys, A. Dorian Challoner
  • Publication number: 20040226370
    Abstract: The present invention discloses an isolated electrostatic biased resonator gyroscope. The gyroscope includes an isolated resonator having a first and a second differential vibration mode, a baseplate supporting the isolated resonator, a plurality of excitation affixed to the baseplate for exciting the first differential vibration mode, a plurality of sensing electrodes affixed to the baseplate for sensing movement of the gyroscope through the second differential vibration mode and a plurality of bias electrodes affixed to the baseplate for trimming isolation of the resonator and substantially minimizing frequency split between the first and second differential vibration modes. Typically, the isolated resonator comprises a proof mass and a counterbalancing plate with the bias electrodes disposed on the baseplate below.
    Type: Application
    Filed: April 25, 2003
    Publication date: November 18, 2004
    Applicants: California Institute of Technology, The Boeing Company
    Inventors: Ken J. Hayworth, Kirill V. Shcheglov, Todd E. Humphreys, A. Dorian Challoner
  • Patent number: 6796179
    Abstract: A split-resonator integrated-post vibratory microgyroscope may be fabricated using micro electrical mechanical systems (MEMS) fabrication techniques. The microgyroscope may include two gyroscope sections bonded together, each gyroscope section including resonator petals, electrodes, and an integrated half post. The half posts are aligned and bonded to act as a single post.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: September 28, 2004
    Assignee: California Institute of Technology
    Inventors: Youngsam Bae, Ken J. Hayworth, Kirill V. Shcheglov
  • Publication number: 20040088127
    Abstract: Embodiments of the invention generally encompass a digital, application specific integrated circuit (ASIC) has been designed to perform excitation of a selected mode within a vibratory rate gyroscope, damping, or “force-rebalance,” of other modes within the sensor, and signal demodulation of the in-phase and quadrature components of the signal containing the angular rate information. The ASIC filters dedicated to each channel may be individually programmed to accommodate different rate sensor designs/technology or variations within the same class of sensors. The ASIC architecture employs a low-power design, making the ASIC, particularly suitable for use in power-sensitive applications.
    Type: Application
    Filed: June 25, 2003
    Publication date: May 6, 2004
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE BOEING COMPANY, CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Robert M'Closkey, A. Dorian Challoner, Eugene Grayver, Ken J. Hayworth
  • Publication number: 20040055381
    Abstract: The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.
    Type: Application
    Filed: August 12, 2003
    Publication date: March 25, 2004
    Inventors: Kirill V. Shcheglov, A. Dorian Challoner, Ken J. Hayworth, Dean V. Wiberg, Karl Y. Yee
  • Publication number: 20040050160
    Abstract: A split-resonator integrated-post vibratory microgyroscope may be fabricated using micro electrical mechanical systems (MEMS) fabrication techniques. The microgyroscope may include two gyroscope sections bonded together, each gyroscope section including resonator petals, electrodes, and an integrated half post. The half posts are aligned and bonded to act as a single post.
    Type: Application
    Filed: May 16, 2003
    Publication date: March 18, 2004
    Inventors: Youngsam Bae, Ken J. Hayworth, Kirill V. Shcheglov