Patents by Inventor Ken K. Chin

Ken K. Chin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10090431
    Abstract: The present disclosure provides improved thin film photovoltaic devices and related methods of fabrication. More particularly, the present disclosure provides improved CdTe photovoltaic devices and related fabrication methods. Disclosed is a novel thin film photovoltaic device and means for its fabrication. An exemplary device includes a metal oxide layer between the absorber layer and the rear electrode, resulting in an ohmic back contact and having improved device stability. The metal oxide layer can include at least one of silver oxide or copper oxide, and may additionally contain nickel oxide, molybdenum oxide, and/or vanadium oxide. The present disclosure is directed towards formation of a ohmic back contact for solar cells, the back contact having improved stability. In certain embodiments, the present disclosure provides for an ohmic contact to p-type II-VI semiconductors, and to the fabrication of solar cells having improved stability, and to solar panels incorporating such back contact schemes.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: October 2, 2018
    Assignee: New Jersey Institute of Technology
    Inventors: Zimeng Cheng, Ken K. Chin, Alan E. Delahoy
  • Publication number: 20160027954
    Abstract: The present disclosure provides improved thin film photovoltaic devices and related methods of fabrication. More particularly, the present disclosure provides improved CdTe photovoltaic devices and related fabrication methods. Disclosed is a novel thin film photovoltaic device and means for its fabrication. An exemplary device includes a metal oxide layer between the absorber layer and the rear electrode, resulting in an ohmic back contact and having improved device stability. The metal oxide layer can include at least one of silver oxide or copper oxide, and may additionally contain nickel oxide, molybdenum oxide, and/or vanadium oxide. The present disclosure is directed towards formation of a ohmic back contact for solar cells, the back contact having improved stability. In certain embodiments, the present disclosure provides for an ohmic contact to p-type II-VI semiconductors, and to the fabrication of solar cells having improved stability, and to solar panels incorporating such back contact schemes.
    Type: Application
    Filed: March 12, 2014
    Publication date: January 28, 2016
    Applicant: New Jersey Institute of Technology
    Inventors: Zimeng Cheng, Ken K. Chin, Alan E. Delahoy
  • Patent number: 8883549
    Abstract: Exemplary embodiments of the present disclosure are directed to improve p-type doping (p-doping) of cadmium telluride (CdTe) for CdTe-based solar cells, such as cadmium Sulfide (Cds)/CdTe solar cells. Embodiments can achieve improved p-doping of CdTe by creating a high density of cadmium (Cd) vacancies (VCd) and subsequently substituting a high density of substitutional defects and/or defect complexes for the Cd vacancies that were created. Formation of a high density of substitutional defects and defect complexes as a p-dopant can improve light-to-electricity conversion efficiency, doping levels or hole concentrations, junction band bending, and/or ohmic contact associated with p-type CdTe (p-CdTe) based solar cells.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: November 11, 2014
    Assignee: New Jersey Institute of Technology
    Inventor: Ken K. Chin
  • Publication number: 20120042950
    Abstract: Exemplary embodiments of the present disclosure are directed to improve p-type doping (p-doping) of cadmium telluride (CdTe) for CdTe-based solar cells, such as cadmium Sulfide (Cds)/CdTe solar cells. Embodiments can achieve improved p-doping of CdTe by creating a high density of cadmium (Cd) vacancies (VCd) and subsequently substituting a high density of substitutional defects and/or defect complexes for the Cd vacancies that were created. Formation of a high density of substitutional defects and defect complexes as a p-dopant can improve light-to-electricity conversion efficiency, doping levels or hole concentrations, junction band bending, and/or ohmic contact associated with p-type CdTe (p-CdTe) based solar cells.
    Type: Application
    Filed: June 21, 2011
    Publication date: February 23, 2012
    Applicant: NEW JERSEY INSTITUTE OF TECHNOLOGY
    Inventor: Ken K. Chin
  • Patent number: 7697797
    Abstract: The present invention is a diaphragm-fiber optic sensor (DFOS), interferometric sensor. This DFOS is based on the principles of Fabry-Perot and Michelson/Mach-Zehnder. The sensor is low cost and is designed with high efficiency, reliability, and Q-point stability, fabricated using MEMS (micro mechanic-electrical system) technology, and has demonstrated excellent performance. A DFOS according to the invention includes a cavity between two surfaces: a diaphragm made of silicon or other material with a rigid body (or boss) at the center and clamped along its edge, and the endface of a single mode optic fiber. By utilizing MEMS technology, the gap width between the diaphragm and the fiber endface is made accurately, ranging from 1 micron to 10 microns.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: April 13, 2010
    Assignee: New Jersey Institute of Technology
    Inventors: Ken K Chin, Guanhua Feng, Ivan Padron, Harry Roman
  • Patent number: 7561277
    Abstract: The theory, design, fabrication, and characterization of MEMS (micro electrical mechanical system) Fabry-Perot diaphragm-fiber optic microphone are described in the present invention. By using MEMS technology in processing and packaging, a square 1.9 mm×1.9 mm, 2 ? thick SiO2 diaphragm with a 350 ? square embossed center of silicon is mechanically clamped to the ferrule of a single mode fiber to keep its closeness (5 ?) and perpendicular orientation with respect to the diaphragm. Static measurement of optical output power versus the pressure on membrane reveals more than one period of Fabry-Perot interference, thereby generating a Fabry-Perot diaphragm-fiber interferometer device accurately reproducing audible acoustic wave.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: July 14, 2009
    Assignee: New Jersey Institute of Technology
    Inventors: Ken K. Chin, Guanhua Feng, Harry Roman
  • Publication number: 20090086214
    Abstract: The present invention is a diaphragm-fiber optic sensor (DFOS), interferometric sensor. This DFOS is based on the principles of Fabry-Perot and Michelson/Mach-Zehnder. The sensor is low cost and is designed with high efficiency, reliability, and Q-point stability, fabricated using MEMS (micro mechanic-electrical system) technology, and has demonstrated excellent performance. A DFOS according to the invention includes a cavity between two surfaces: a diaphragm made of silicon or other material with a rigid body (or boss) at the center and clamped along its edge, and the endface of a single mode optic fiber. By utilizing MEMS technology, the gap width between the diaphragm and the fiber endface is made accurately, ranging from 1 micron to 10 microns.
    Type: Application
    Filed: September 25, 2008
    Publication date: April 2, 2009
    Applicant: New Jersey Institute of Technology
    Inventors: Ken K. Chin, Guanhua Feng, Ivan Pardon, Harry Roman
  • Publication number: 20090015239
    Abstract: A system and method in which an overhead high voltage transmission line sensor system is able to measure one or more of temperature, current, and line sag for a conductor within a high voltage transmission line system. The sensor system may be able to clamp to a transmission conductor or splice, harvest power from the transmission line, and/or transmit data corresponding to measurements of current, temperature, and line sag.
    Type: Application
    Filed: March 3, 2008
    Publication date: January 15, 2009
    Inventors: George E. Georgiou, Ken K. Chin, Raymond Ferraro, Guanhua Feng, Karen Gail Noe
  • Publication number: 20040011962
    Abstract: The present invention comprises the principle, theory, circuit design, computer simulation, and experimental demonstration of a new type of electronic device—the multi-cycle integration focal plane array (MIFPA)—for lock-in and/or gated imaging, spectroscopy, and/or spectroscopic imaging of extremely weak signals buried in strong background. Particularly, the MIFPA can operate in three modes—the lock-in (LI), gated (G), and gated lock-in (GLI) modes. Particularly, one MIFPA circuitry was demonstrated by simulation and experiment. Particularly, the circuitry was capable to perform the LI-, G-, and GLI-modes.
    Type: Application
    Filed: July 18, 2002
    Publication date: January 22, 2004
    Inventors: Ken K. Chin, Haijiang Ou
  • Patent number: 6630669
    Abstract: In the present invention of Correlated Modulation Imaging (CMI), the weak optical image signal (and therefore the signal current) is modulated, and the signal integration direction is correlated to the modulation. Therefore, the dark and/or background current, which are not modulated, are cancelled, while the signal current is integrated. As a result, the total integration time of the signal of each pixel is increased, and its signal to noise ratio and dynamic range are improved. Besides, the CMI noise spectrum peaks at the modulation frequency, and therefore, the detector's 1/f and other low frequency noises can be suppressed. In the present invention, the method and theory of CMI, as well as the means and steps for the realization of CMI, are explicitly developed. Two versions of CMOS devices (CMI unit pre-amplifier version 1 and 3), with their circuitry design and testing data are presented as the critical component for correlated modulation imaging.
    Type: Grant
    Filed: March 28, 2000
    Date of Patent: October 7, 2003
    Assignee: CF Technologies, Inc.
    Inventors: Ken K. Chin, Haijiang Ou