Patents by Inventor Ken Kimura

Ken Kimura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10513763
    Abstract: A Cr-containing ferritic stainless steel sheet is desired with improved corrosion resistance and rust resistance as well as improved ridging resistance. To achieve these results, the ferritic stainless steel sheet derives the relationship between Ap, which shows the ?-phase rate at 1100° C. due to a predetermined ingredient, and Sn in ferritic stainless steel which becomes a dual phase structure of ?+? in the hot rolling temperature region, applies and adds Sn, and hot rolls the steel to give a total rolling rate of 15% or more in 1100° C. or higher hot rolling to thereby obtain ferritic stainless steel sheet which has good ridging resistance, which also has excellent corrosion resistance and rust resistance, and which can be applied to general durable consumer goods, wherein 0.060?Sn?0.634?0.0082Ap and 10?Ap?70.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: December 24, 2019
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Masaharu Hatano, Eiichiro Ishimaru, Akihiko Takahashi, Ken Kimura, Shinichi Teraoka
  • Patent number: 10513747
    Abstract: A ferritic stainless steel sheet containing, by mass %, C: 0.020% or less, Cr: 10.0% to 25.0%, N: 0.020% or less, Sn: 0.010% to 0.50%, and one or more of Ti: 0.60% or less, Nb: 0.60% or less, V: 0.60% or less, and Zr: 0.60% or less so as to satisfy Equation (1): (Ti/48+V/51+Zr/91+Nb/93)/(C/12+N/14)?1.0, wherein a difference between a stress ?1 (N/mm2) after prestrain imparting tensile deformation with 7.5% of strain, and an upper yield stress ?2 (N/mm2) when the steel sheet is subjected to heat treatment at 200° C. for 30 minutes and then to tension again after the tensile deformation is 8 or less.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: December 24, 2019
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Ken Kimura, Junichi Hamada, Eiichiro Ishimaru, Akihito Yamagishi, Naoto Hansaki
  • Publication number: 20190241998
    Abstract: A Cr-containing ferritic stainless steel sheet is desired with improved corrosion resistance and rust resistance as well as improved ridging resistance. To achieve these results, the ferritic stainless steel sheet derives the relationship between Ap, which shows the ?-phase rate at 1100° C. due to a predetermined ingredient, and Sn in ferritic stainless steel which becomes a dual phase structure of ?+? in the hot rolling temperature region, applies and adds Sn, and hot rolls the steel to give a total rolling rate of 15% or more in 1100° C. or higher hot rolling to thereby obtain ferritic stainless steel sheet which has good ridging resistance, which also has excellent corrosion resistance and rust resistance, and which can be applied to general durable consumer goods, wherein 0.060?Sn?0.634?0.0082Ap and 10?Ap?70.
    Type: Application
    Filed: April 15, 2019
    Publication date: August 8, 2019
    Applicant: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Masaharu Hatano, Eiichiro Ishimaru, Akihiko Takahashi, Ken Kimura, Shinichi Teraoka
  • Patent number: 10358707
    Abstract: A Cr-containing ferritic stainless steel sheet is desired with improved corrosion resistance and rust resistance as well as improved ridging resistance. To achieve these results, the ferritic stainless steel sheet derives the relationship between Ap, which shows the ?-phase rate at 1100° C. due to a predetermined ingredient, and Sn in ferritic stainless steel which becomes a dual phase structure of ?+? in the hot rolling temperature region, applies and adds Sn, and hot rolls the steel to give a total rolling rate of 15% or more in 1100° C. or higher hot rolling to thereby obtain ferritic stainless steel sheet which has good ridging resistance, which also has excellent corrosion resistance and rust resistance, and which can be applied to general durable consumer goods, wherein 0.060?Sn?0.634?0.0082Ap and 10?Ap?70.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: July 23, 2019
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Masaharu Hatano, Eiichiro Ishimaru, Akihiko Takahashi, Ken Kimura, Shinichi Teraoka
  • Patent number: 10072323
    Abstract: This hot-rolled ferritic stainless steel sheet has a steel composition containing, in terms of % by mass: 0.02% or less of C; 0.02% or less of N; 0.1% to 1.5% of Si; 1.5% or less of Mn; 0.035% or less of P; 0.010% or less of S; 1.5% or less of Ni; 10% to 20% of Cr; 1.0% to 3.0% of Cu; 0.08% to 0.30% of Ti; and 0.3% or less of Al, with the balance being Fe and unavoidable impurities, and the hot-rolled ferritic stainless steel sheet has a Vickers hardness of less than 235 Hv.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: September 11, 2018
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Shinichi Teraoka, Masaaki Kobayashi, Yuuji Koyama, Junichi Hamada, Norihiro Kanno, Yoshiharu Inoue, Ken Kimura, Jun Takahashi, Shigeyuki Gotoh
  • Patent number: 10023929
    Abstract: A hot-rolled steel sheet has a composition containing: in mass %, C: 0.01 to 0.2%; Si: 2.5% or less; Mn: 4.0% or less; P: 0.10% or less; S: 0.03% or less; Al: 0.001 to 2.0%; N: 0.01% or less; and O: 0.01% or less, and one kind or a total of two kinds of Ti and Nb for 0.01 to 0.30%. An average effective crystal grain diameter at a sheet thickness ¼ part is 10 ?m or less, and an average effective crystal grain diameter at a part of a range of 50 ?m from a surface is 6 ?m or less. A structure of the steel sheet is tempered martensite or lower bainite, and a volume fraction thereof is 90% or more as a total.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: July 17, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroshi Shuto, Masafumi Azuma, Akifumi Sakakibara, Yuuki Kanzawa, Ken Kimura
  • Publication number: 20170349988
    Abstract: The present invention focuses on Sn and has as its problem to not only improve the corrosion resistance and rust resistance of Cr-containing ferritic stainless steel but also improve the ridging resistance. The present invention derives the relationship between Ap, which shows the ?-phase rate at 1100° C. due to a predetermined ingredient, and Sn in ferritic stainless steel which becomes a dual phase structure of ?+? in the hot rolling temperature region, applies and adds Sn, and hot rolls the steel to give a total rolling rate of 15% or more in 1100° C. or higher hot rolling to thereby obtain ferritic stainless steel sheet which has good ridging resistance, which also has excellent corrosion resistance and rust resistance, and which can be applied to general durable consumer goods: 0.060?Sn?0.634?0.
    Type: Application
    Filed: August 22, 2017
    Publication date: December 7, 2017
    Applicant: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Masaharu HATANO, Eiichiro ISHIMARU, Akihiko TAKAHASHI, Ken KIMURA, Shinichi TERAOKA
  • Patent number: 9771640
    Abstract: A ferritic stainless steel sheet having ridging resistance contains, by mass, 0.025 to 0.30% C, 0.01 to 1.00% Si, 0.01 to 2.00% Mn, 0.050% or less P, 0.020% or less S, 11.0 to 22.0% Cr, and 0.022 to 0.10% N. In addition, Ap, which is defined as 420C+470N+23Ni+9Cu+7Mn?11.5(Cr+Si)?12Mo?52Al?47Nb?49Ti+189 wherein each of Sn, C, N, Ni, Cu, Mn, Cr, Si, Mo, Al, Nb, and Ti denotes the content of the element, satisfies 10?Ap?70. Furthermore, a content of Sn satisfies 0.060?Sn?0.634?0.0082Ap. Residual ingredients are Fe and unavoidable impurities, and a metal structure of the steel sheet is a ferrite single phase. The ferritic stainless steel sheet has a ridging height of less than 6 ?m. This ferritic stainless steel sheet improves the corrosion resistance and rust resistance of Cr-containing ferritic stainless steel as well as the ridging resistance.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: September 26, 2017
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Masaharu Hatano, Eiichiro Ishimaru, Akihiko Takahashi, Ken Kimura, Shinichi Teraoka
  • Patent number: 9399809
    Abstract: This hot-rolled ferritic stainless steel sheet has a steel composition containing, in terms of % by mass: 0.02% or less of C; 0.02% or less of N; 0.1% to 1.5% of Si; 1.5% or less of Mn; 0.035% or less of P; 0.010% or less of S; 1.5% or less of Ni; 10% to 20% of Cr; 1.0% to 3.0% of Cu; 0.08% to 0.30% of Ti; and 0.3% or less of Al, with the balance being Fe and unavoidable impurities, and the hot-rolled ferritic stainless steel sheet has a Vickers hardness of less than 235 Hv.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: July 26, 2016
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Shinichi Teraoka, Masaaki Kobayashi, Yuuji Koyama, Junichi Hamada, Norihiro Kanno, Yoshiharu Inoue, Ken Kimura, Jun Takahashi, Shigeyuki Gotoh
  • Publication number: 20160024627
    Abstract: This hot-rolled ferritic stainless steel sheet has a steel composition containing, in terms of % by mass: 0.02% or less of C; 0.02% or less of N; 0.1% to 1.5% of Si; 1.5% or less of Mn; 0.035% or less of P; 0.010% or less of S; 1.5% or less of Ni; 10% to 20% of Cr; 1.0% to 3.0% of Cu; 0.08% to 0.30% of Ti; and 0.3% or less of Al, with the balance being Fe and unavoidable impurities, and the hot-rolled ferritic stainless steel sheet has a Vickers hardness of less than 235 Hv.
    Type: Application
    Filed: October 2, 2015
    Publication date: January 28, 2016
    Inventors: Shinichi TERAOKA, Masaaki KOBAYASHI, Yuuji KOYAMA, Junichi HAMADA, Norihiro KANNO, Yoshiharu INOUE, Ken KIMURA, Jun TAKAHASHI, Shigeyuki GOTOH
  • Patent number: 9243029
    Abstract: Provided is a novel crystal of oxidized glutathione hexahydrate. Crystal of oxidized glutathione hexahydrate is produced by cooling an aqueous solution containing oxidized glutathione to 15° C. or lower to precipitate a crystal of oxidized glutathione hexahydrate.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: January 26, 2016
    Assignee: Kyowa Hakko Bio Co., Ltd.
    Inventors: Ken Kimura, Kenta Fukumoto, Hiroshi Tanaka
  • Publication number: 20160017451
    Abstract: A ferritic stainless steel sheet exhibiting small increase in strength after aging heat treatment in the present invention contains, by mass %, C: 0.020% or less, Cr: 10.0% to 25.0%, N: 0.020% or less, Sn: 0.010% to 0.50%, and one or more of Ti: 0.60% or less, Nb: 0.60% or less, V: 0.60% or less, and Zr: 0.60% or less so as to satisfy the following Equation (1), in which the difference between stress ?1 (N/mm2) after prestrain imparting tensile deformation with 7.5% of strain, and upper yield stress ?2 (N/mm2) when the steel sheet is subjected to heat treatment at 200° C. for 30 minutes and then to tension again after the tensile deformation is 8 or less. (Ti/48+V/51+Zr/91+Nb/93)/(C/12+N/14)?1.
    Type: Application
    Filed: March 14, 2014
    Publication date: January 21, 2016
    Applicant: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Ken KIMURA, Junichi HAMADA, Eiichiro ISHIMARU, Akihito YAMAGISHI, Naoto HANSAKI
  • Publication number: 20150376730
    Abstract: A hot-rolled steel sheet has a composition containing: in mass %, C: 0.01 to 0.2%; Si: 2.5% or less; Mn: 4.0% or less; P: 0.10% or less; S: 0.03% or less; Al: 0.001 to 2.0%; N: 0.01% or less; and O: 0.01% or less, and one kind or a total of two kinds of Ti and Nb for 0.01 to 0.30%. An average effective crystal grain diameter at a sheet thickness ¼ part is 10 ?m or less, and an average effective crystal grain diameter at a part of a range of 50 ?m from a surface is 6 ?m or less. A structure of the steel sheet is tempered martensite or lower bainite, and a volume fraction thereof is 90% or more as a total.
    Type: Application
    Filed: May 16, 2014
    Publication date: December 31, 2015
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroshi SHUTO, Masafumi AZUMA, Akifumi SAKAKIBARA, Yuuki KANZAWA, Ken KIMURA
  • Patent number: 9217737
    Abstract: The present invention is related to hydrocarbon compositions comprising butanol that have substantially the same or improved performance properties than comparable hydrocarbon compositions comprising ethanol and to methods for identifying such compositions.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: December 22, 2015
    Assignee: Butamax Advanced Biofuels LLC
    Inventors: Dennis P. Boyd, Theresa M. Dobel, Don Germano, Robert S. Grace, Phillip R. Greene, Ken Kimura, Geoffrey Lulham, Adam Schubert, Ronald D. Stevens, Delwyn Greene
  • Publication number: 20150175653
    Abstract: Provided is a novel crystal of oxidized glutathione hexahydrate. Crystal of oxidized glutathione hexahydrate is produced by cooling an aqueous solution containing oxidized glutathione to 15° C. or lower to precipitate a crystal of oxidized glutathione hexahydrate.
    Type: Application
    Filed: March 2, 2015
    Publication date: June 25, 2015
    Inventors: Ken KIMURA, Kenta FUKUMOTO, Hiroshi TANAKA
  • Patent number: 9000126
    Abstract: Provided is a novel crystal of oxidized glutathione hexahydrate. Crystal of oxidized glutathione hexahydrate is produced by cooling an aqueous solution containing oxidized glutathione to 15° C. or lower to precipitate a crystal of oxidized glutathione hexahydrate.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: April 7, 2015
    Assignee: Kyowa Hakko Bio Co., Ltd.
    Inventors: Ken Kimura, Kenta Fukumoto, Hiroshi Tanaka
  • Patent number: 8884057
    Abstract: A non-crystalline amorphism of oxidized glutathione is produced by drying a crystal of oxidized glutathione hexahydrate at a temperature of 40 to 90° C.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: November 11, 2014
    Assignee: Kyowa Hakko Bio Co., Ltd.
    Inventors: Ken Kimura, Kenta Fukumoto, Hiroshi Tanaka
  • Publication number: 20140294660
    Abstract: This hot-rolled ferritic stainless steel sheet contains, in terms of % by mass: 0.0150% or less of C, 0.01% to 2.00% of Si, 0.01% to 2.00% of Mn, less than 0.040% of P, 0.010% or less of S, 10.0% to 30.0% of Cr, 0.001% to 0.100% of Al, and 0.0200% or less of N, with a balance being Fe and unavoidable impurities, wherein in a cross section in a range of ¼ to ¾ of a sheet thickness, a length L of all crystal grain boundaries having orientation differences of 1° or more to less than 180° and a length La of subgrain boundaries having orientation differences of 1° or more to less than 15° satisfy a relation of La/L?0.20.
    Type: Application
    Filed: December 6, 2012
    Publication date: October 2, 2014
    Inventors: Ken Kimura, Junichi Hamada, Jun Takahashi, Yuuji Koyama, Shigeyuki Gotoh
  • Publication number: 20140216614
    Abstract: The present invention focuses on Sn and has as its problem to not only improve the corrosion resistance and rust resistance of Cr-containing ferritic stainless steel but also improve the ridging resistance. The present invention derives the relationship between Ap, which shows the ?-phase rate at 1100° C. due to a predetermined ingredient, and Sn in ferritic stainless steel which becomes a dual phase structure of ?+? in the hot rolling temperature region, applies and adds Sn, and hot rolls the steel to give a total rolling rate of 15% or more in 1100° C. or higher hot rolling to thereby obtain ferritic stainless steel sheet which has good ridging resistance, which also has excellent corrosion resistance and rust resistance, and which can be applied to general durable consumer goods: 0.060?Sn?0.634?0.
    Type: Application
    Filed: June 18, 2012
    Publication date: August 7, 2014
    Inventors: Masaharu Hatano, Eiichiro Ishimaru, Akihiko Takahashi, Ken Kimura, Shinichi Teraoka
  • Patent number: 8628631
    Abstract: The present invention provides a ferritic stainless steel casting and a sheet thereof excellent in deep drawability, punch stretchability and ridging resistance and a method for producing the casting and the sheet. In the present invention, a chemical composition is controlled so that the amounts of C, N, Si, Mn, P and Ti may be reduced to the utmost for securing high workability and, on the basis of the chemical composition, the roping and ridging of a steel sheet product is reduced by adding Mg, thus dispersing Mg containing oxides that accelerate the formation of nuclei for solidification and, resultantly, suppressing the development of coarse columnar crystals in a casting. The present invention is characterized in that the average composition of the Mg containing oxides dispersing in a casting satisfies the following expressions <2> and <3>, 17.4(Al2O3)+3.9(MgO)+0.3(MgAl2O4)+18.7(CaO)?500??<2>, (Al2O3)+(MgO)+(MgAl2O4)+(CaO)?95??<3>.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: January 14, 2014
    Assignee: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Akihiko Takahashi, Junichi Hamada, Ken Kimura, Takashi Morohoshi, Yoshihito Yamada, Toyohiko Kakihara, Satoshi Hashimoto