Patents by Inventor Ken Lai

Ken Lai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110022694
    Abstract: Methods, systems, and computer programs for creating virtual machines (VM) and associated networks in a virtual infrastructure are presented. The method defines virtual network templates in a database, where each virtual network template includes network specifications. A configuration of a virtual system is created, which includes VMs, virtual lab networks associated with virtual network templates, and connections from the VMs to the virtual lab networks. Further, the configuration is deployed in the virtual infrastructure resulting in a deployed configuration. The deployment of the configuration includes instantiating in the virtual infrastructure the VMs of the configuration, instantiating in the virtual infrastructure the virtual lab networks, retrieving information from the database, and creating and executing programming instructions for the VMs.
    Type: Application
    Filed: July 27, 2009
    Publication date: January 27, 2011
    Applicant: VMWARE, INC.
    Inventors: Anupam DALAL, Min-Ken LAI, Aastha BHARDWAJ
  • Publication number: 20110022695
    Abstract: Methods, systems, and computer programs for creating isolated environments that include virtual machines (VM) and networks in a virtual infrastructure are presented. The method includes an operation to define a configuration of a virtual system which includes VMs, virtual network interface cards (VNIC) in the VMs, and configuration local networks (CLN). Further, the method associates each VNIC with one of the CLNs and transmits instructions to the virtual infrastructure for deploying the configuration. Deploying the configuration includes instantiating VMs and CLNs in the virtual infrastructure. Each VM is instantiated in a host monitored by a virtual lab server, and the CLNs are instantiated in the same hosts where the VMs have been instantiated. Only VMs from the configuration can connect to the instantiated CLNs.
    Type: Application
    Filed: July 27, 2009
    Publication date: January 27, 2011
    Applicant: VMware, Inc.
    Inventors: Anupam DALAL, Min-Ken LAI, Aastha BHARDWAJ
  • Publication number: 20070218688
    Abstract: In one embodiment, a method for forming a tungsten-containing material on a substrate is provided which includes forming a tungsten-containing layer by sequentially exposing a substrate to a processing gas and a tungsten-containing gas during an atomic layer deposition process, wherein the processing gas comprises a boron-containing gas and a nitrogen-containing gas, and forming a tungsten bulk layer over the tungsten-containing layer by exposing the substrate to a deposition gas comprising the tungsten-containing gas and a reactive precursor gas during a chemical vapor deposition process. In one example, the tungsten-containing layer and the tungsten bulk layer are deposited within the same processing chamber.
    Type: Application
    Filed: May 15, 2007
    Publication date: September 20, 2007
    Inventors: Ming Xi, Ashok Sinha, Moris Kori, Alfredq Mak, Xinliang Lu, Ken Lai, Karl Littau
  • Publication number: 20070009658
    Abstract: A process and an apparatus is disclosed for forming refractory metal layers employing pulse nucleation to minimize formation of a concentration boundary layer during nucleation. The surface of a substrate is nucleated in several steps. Following each nucleation step is a removal step in which all reactants and by-products of the nucleation process are removed from the processing chamber. Removal may be done by either rapidly evacuating the processing chamber, rapidly introducing a purge gas therein or both. After removal of the process gas and by-products from the processing chamber, additional nucleation steps may be commenced to obtain a nucleation layer of desired thickness. After formation of the nucleation layer, a layer is formed adjacent to the nucleation layer using standard bulk deposition techniques.
    Type: Application
    Filed: December 17, 2001
    Publication date: January 11, 2007
    Inventors: Jong Yoo, Xinliang Lu, Chiliang Chen, Ken Lai, Chien-Teh Kao
  • Publication number: 20060264031
    Abstract: In one embodiment, a method for forming a tungsten-containing material on a substrate is provided which includes forming a tungsten nucleation layer by sequentially exposing a substrate to a boron-containing gas and a tungsten-containing gas within a processing chamber during an atomic layer deposition process, and forming a tungsten bulk layer on the tungsten nucleation layer by exposing the substrate to a processing gas that contains the tungsten-containing gas and a reactive precursor gas within another processing chamber during a chemical vapor deposition process. In one example, the tungsten nucleation layer is deposited on a dielectric material, such as silicon oxide. In another example, the tungsten nucleation layer is deposited on a barrier material, such as titanium or titanium nitride. Other examples provide that the tungsten nucleation layer and the tungsten bulk layer are deposited in the same processing chamber.
    Type: Application
    Filed: August 2, 2006
    Publication date: November 23, 2006
    Inventors: Ming Xi, Ashok Sinha, Moris Kori, Alfred Mak, Xinliang Lu, Ken Lai, Karl Littau
  • Publication number: 20060223286
    Abstract: A method and apparatus for atomic layer deposition (ALD) is described. The apparatus comprises a deposition chamber and a wafer support. The deposition chamber is divided into two or more deposition regions that are integrally connected one to another. The wafer support is movable between the two or more interconnected deposition regions within the deposition chamber.
    Type: Application
    Filed: June 12, 2006
    Publication date: October 5, 2006
    Inventors: Barry Chin, Alfred Mak, Lawrence Lei, Ming Xi, Hua Chung, Ken Lai, Jeong Byun
  • Publication number: 20060040052
    Abstract: A method for forming a tungsten layer on a substrate surface is provided. In one aspect, the method includes positioning the substrate surface in a processing chamber and exposing the substrate surface to a soak. A nucleation layer is then deposited on the substrate surface in the same processing chamber by alternately pulsing a tungsten-containing compound and a reducing gas selected from a group consisting of silane, disilane, dichlorosilane and derivatives thereof. A tungsten bulk layer may then be deposited on the nucleation layer using cyclical deposition, chemical vapor deposition, or physical vapor deposition techniques.
    Type: Application
    Filed: April 18, 2003
    Publication date: February 23, 2006
    Inventors: Hongbin Fang, Hyungsuk Yoon, Ken Lai, Chi Young, Chao-Ming Huang, Ming Xi, Michael Yang, Hua Chung
  • Publication number: 20060009034
    Abstract: In one embodiment of the invention, a method for forming a tungsten-containing layer on a substrate is provided which includes positioning a substrate containing a barrier layer disposed thereon in a process chamber, exposing the substrate to a first soak process for a first time period and depositing a nucleation layer on the barrier layer by flowing a tungsten-containing precursor and a reductant into the process chamber. The method further includes exposing the nucleation layer to a second soak process for a second time period and depositing a bulk layer on the nucleation layer.
    Type: Application
    Filed: January 19, 2005
    Publication date: January 12, 2006
    Inventors: Ken Lai, Ravi Rajagopalan, Amit Khandelwal, Madhu Moorthy, Srinivas Gandikota, Joseph Castro, Aygerinos Gelatos, Cheryl Knepfler, Ping Jian, Hongbin Fang, Chao-Ming Huang, Ming Xi, Michael Yang, Hua Chung, Jeong Byun
  • Publication number: 20050287807
    Abstract: Methods for the deposition of tungsten films are provided. The methods include depositing a nucleation layer by alternatively adsorbing a tungsten precursor and a reducing gas on a substrate, and depositing a bulk layer of tungsten over the nucleation layer.
    Type: Application
    Filed: August 18, 2005
    Publication date: December 29, 2005
    Inventors: Ken Lai, Jeong Byun, Frederick Wu, Ramanujapuran Srinivas, Avgerinos Gelatos, Mei Chang, Moris Kori, Ashok Sinha, Hua Chung, Hongbin Fang, Alfred Mak, Michael Yang, Ming Xi
  • Patent number: 6210483
    Abstract: The invention provides an apparatus for excluding unwanted deposition at the edge of a substrate which prevents excess purge gas from flowing over the surface of the substrate at the region adjacent a notch on a substrate. Another aspect of the invention provides a wider purge gas channel that prevents excess purge gas from flowing over the surface of the substrate. Still another aspect of the present invention provides a purge gas guide that includes a notch therein to prevent excess purge gas from adversely affecting deposition at the vicinity of the substrate notch.
    Type: Grant
    Filed: December 2, 1998
    Date of Patent: April 3, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Ken Tsai, Steve Ghanayem, Joseph Yudovsky, Ken Lai