Patents by Inventor Ken MIYAUCHI

Ken MIYAUCHI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240022836
    Abstract: Provided are a solid-state imaging device, a method for driving a solid-state imaging device, and an electronic apparatus that are capable of selecting a pixel operating mode between a RS mode and a GS mode and switching a conversion gain read-out mode, where signals produced with different conversion gains are read, among several options depending on a scene. As a result, the solid-state imaging device, the method for driving the solid-state imaging device and the electronic apparatus can minimize a drop in SNR at the conjunction point between a HCG signal and a LCG signal and also achieve high full well capacity and little dark noise. In a solid-state imaging device, a pixel part includes pixels arranged in a matrix pattern, and each pixel includes a photoelectric conversion reading part. The solid-state imaging device is capable of performing rolling shutter (RS) and global shutter (GS).
    Type: Application
    Filed: July 12, 2023
    Publication date: January 18, 2024
    Inventors: Ken MIYAUCHI, Hideki OWADA, Kazuya MORI, Isao TAKAYANAGI
  • Patent number: 11849235
    Abstract: Provided are a solid-state imaging device, a method for driving a solid-state imaging device, and an electronic apparatus capable of reading signals produced with different conversion gains and having different signal directions. A pixel signal processing part 400 includes a first reading part 410 and a second reading part 420. Of a pixel signal PIXOUT input into an input node ND401, the first reading part 410 inverts the signal direction of a first-conversion-gain signal (HCGRST, HCGSIG) and outputs an inverted first-conversion-gain signal (HCGRST, HCGSIG), which has been subjected to inversion and amplification, to an AD converting part 430 via a connection node ND402. Of the pixel signal PIXOUT input into the input node ND401, the second reading part 420 keeps the signal direction of a second-conversion-gain signal (LCGSIG, LCGRST) unchanged, and outputs a non-inverted second-conversion-gain signal (LCGSIG, LCGRST) to the AD converting part 430 via the connection node ND402.
    Type: Grant
    Filed: June 16, 2022
    Date of Patent: December 19, 2023
    Assignees: Brillnics Singapore Pte. Ltd., THE RITSUMEIKAN TRUST
    Inventors: Shunsuke Okura, Ai Otani, Ken Miyauchi, Hideki Owada, Sangman Han, Isao Takayanagi
  • Publication number: 20230353898
    Abstract: A solid-state imaging device, a method for driving a solid-state imaging device and an electronic apparatus are capable of reducing kTC noise of a LCG signal, preventing a drop in SNR at the conjunction point between a HCG signal and the LCG signal, and eventually achieving improved image quality. At a start of a reset period, first and second reset transistors are switched into a conduction state. During a predetermined first period after the reset period starts, the first reset line is kept connected to a reset potential. After the first period elapses, the second reset transistor is switched into a non-conduction state to switch the first reset line into a floating state, so that the first reset line has high impedance. After a second period elapses and when the reset period ends, the first reset transistor is switched into the non-conduction state.
    Type: Application
    Filed: April 28, 2023
    Publication date: November 2, 2023
    Inventors: Kazuki TATSUTA, Shunsuke OKURA, Ken MIYAUCHI, Hideki OWADA, Sangman HAN, Isao TAKAYANAGI
  • Patent number: 11805323
    Abstract: A solid-state imaging device, a method for driving the same, and an electronic apparatus can achieve a high dynamic range based on multiple exposure technique, where images captured with different exposure durations are combined, with it being possible to prevent motion artifacts and LED flickers. A pixel has a 4:0 configuration. The pixel is divided into, for example, four sub-pixels all of which have the same color (for example, G (green)). An access control part sets different charge integration periods and different charge storage starting times between photoelectric conversion parts PD of the sub-pixels and controls the charge integration periods such that they overlap each other. In other words, the access control part sets different charge integration periods and different charge storage starting times, the number of which corresponds to the number of sub-pixels having the same color, and controls the charge integration periods such that they overlap each other.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: October 31, 2023
    Assignee: BRILLNICS SINGAPORE PTE. LTD.
    Inventors: Ken Miyauchi, Kazuya Mori, Sangman Han
  • Publication number: 20230300497
    Abstract: Some embodiments relate to an imaging system including an active pixel a comparator, a write control circuit, and an analog-to-digital conversion (ADC) memory. The active pixel may include a photodiode and a plurality of transistors. The comparator may be operative coupled to the active pixel and configured to receive an output of the active pixel. The write control circuit may be operative coupled to the comparator and configured to receive an output from the comparator. The ADC memory may be operatively coupled to the write control circuit. A data structure may be stored in the ADC memory, and may be configured to store at least a first data string, which may include a set of flag bits for identifying each ADC operation performed and a set of ADC data bits.
    Type: Application
    Filed: May 24, 2021
    Publication date: September 21, 2023
    Inventors: Masayuki UNO, Rimon IKENO, Ken MIYAUCHI, Kazuya MORI, Hideki OWADA
  • Publication number: 20230300493
    Abstract: Some embodiments relate to an active pixel for use in a digital pixel sensor (DPS) imaging system having complete intra-pixel charge transfer functionality. The active pixel may include a first photodiode, and a first transfer gate and a second transfer gate each operatively coupled to the first photodiode. The first transfer gate and the second transfer gate may reside at opposite sides of the first photodiode. An electron drift current within the first photodiode may cause two direction charge transfer of charge of the first photodiode to the first transfer gate and the second transfer gate.
    Type: Application
    Filed: May 24, 2021
    Publication date: September 21, 2023
    Inventors: Masayuki UNO, Rimon IKENO, Ken MIYAUCHI, Kazuya MORI, Hideki OWADA
  • Publication number: 20230239594
    Abstract: Some embodiments relate to an imaging system including an active pixel and an analog-to-digital conversion (ADC) circuit including comparator. The comparator may be operatively coupled to the active pixel and configured to receive an output of the active pixel. The back-end ADC and memory circuit may be operatively coupled to the active pixel. The back-end ADC and memory circuit may include a write control circuit, an ADC memory operatively coupled to a read/write data bus and to the write control circuit, and a state latch operatively coupled to the write control circuit.
    Type: Application
    Filed: May 24, 2021
    Publication date: July 27, 2023
    Inventors: Masayuki UNO, Rimon IKENO, Ken MIYAUCHI, Kazuya MORI, Hideki OWADA
  • Publication number: 20230232133
    Abstract: Provided are a solid-state imaging device, a method for driving a solid-state imaging device and an electronic apparatus capable not only of having advanced global shutter and autofocus functions but also of sufficiently achieving single exposure high dynamic range (SEHDR) performance, thereby substantially realizing enhanced dynamic range and frame rate. In an image capturing mode, a reading part controls driving of a conversion signal reading part such that the conversion signal reading part keeps first and second transfer transistors in a conduction state in the same transfer period and performs a read-out operation on a pixel signal corresponding to a sum of charges stored in a first photodiode and charges stored in a second photodiode with a first conversion gain and subsequently with a second conversion gain.
    Type: Application
    Filed: January 17, 2023
    Publication date: July 20, 2023
    Inventor: Ken MIYAUCHI
  • Patent number: 11671730
    Abstract: In a pixel 200, a floating diffusion FD11 and a first capacitor CS11 are selectively connected to each other via a first connection element LG11-Tr, to change the capacitance of the floating diffusion FD11 between a first capacitance and a second capacitance, thereby changing the conversion gain between a first conversion gain (HCG) corresponding to the first capacitance and a second conversion gain (MCG) corresponding to the second capacitance. The floating diffusion FD11 and a second capacitor CS12 are connected together through a second connection element SG11-Tr to change the capacitance of the floating diffusion FD11 to a third capacitance, thereby changing the conversion gain of the source following transistor SF11-Tr to a third conversion gain (LCG) corresponding to the third capacitance.
    Type: Grant
    Filed: May 20, 2022
    Date of Patent: June 6, 2023
    Assignee: BRILLNICS SINGAPORE PTE. LTD.
    Inventors: Ken Miyauchi, Isao Takayanagi
  • Publication number: 20230156369
    Abstract: A source follower element is adjacent to a first lateral part of a floating diffusion in a first direction orthogonal to the first lateral part, a reset element is adjacent to a second lateral part of the floating diffusion in the first direction, and the floating diffusion and the source follower element are connected through a wiring. Some of the photoelectric conversion elements are adjacent to each other in a second direction and spaced away from each other with a first spacing therebetween that allows at least the source follower element and the reset element to be formed therein. Some of the photoelectric conversion elements are adjacent to each other in the first direction and spaced away from each other with a second spacing therebetween that is less than the first spacing.
    Type: Application
    Filed: March 30, 2021
    Publication date: May 18, 2023
    Inventors: Ken MIYAUCHI, Kazuya MORI
  • Patent number: 11627272
    Abstract: A pixel includes photoelectric conversion elements for generating charges through photoelectric conversion and storing the generated charges in a storing period, transfer elements for transferring the stored charges, an output node to which the charges stored in the photoelectric conversion elements are transferred through the transfer elements, an output buffer part for converting the charges in the output node into a voltage signal at a level determined by the amount of the charges, and a comparator for performing a comparing operation of comparing the voltage signal from the output buffer part against a referential voltage and outputting a digital comparison result signal. The comparator performs, under control of a reading part, the comparing operation on read-out signals read in at least two different modes through different sequences of operations for reading performed on charges stored in the different photoelectric conversion elements.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: April 11, 2023
    Assignee: BRILLNICS SINGAPORE PTE. LTD.
    Inventors: Ken Miyauchi, Kazuya Mori
  • Publication number: 20220408047
    Abstract: Provided are a solid-state imaging device, a method for driving a solid-state imaging device, and an electronic apparatus capable of reading signals produced with different conversion gains and having different signal directions. A pixel signal processing part 400 includes a first reading part 410 and a second reading part 420. Of a pixel signal PIXOUT input into an input node ND401, the first reading part 410 inverts the signal direction of a first-conversion-gain signal (HCGRST, HCGSIG) and outputs an inverted first-conversion-gain signal (HCGRST, HCGSIG), which has been subjected to inversion and amplification, to an AD converting part 430 via a connection node ND402. Of the pixel signal PIXOUT input into the input node ND401, the second reading part 420 keeps the signal direction of a second-conversion-gain signal (LCGSIG, LCGRST) unchanged, and outputs a non-inverted second-conversion-gain signal (LCGSIG, LCGRST) to the AD converting part 430 via the connection node ND402.
    Type: Application
    Filed: June 16, 2022
    Publication date: December 22, 2022
    Inventors: Shunsuke OKURA, Ai OTANI, Ken MIYAUCHI, Hideki OWADA, Sangman HAN, Isao TAKAYANAGI
  • Publication number: 20220385852
    Abstract: In a pixel 200, a floating diffusion FD11 and a first capacitor CS11 are selectively connected to each other via a first connection element LG11-Tr, to change the capacitance of the floating diffusion FD11 between a first capacitance and a second capacitance, thereby changing the conversion gain between a first conversion gain (HCG) corresponding to the first capacitance and a second conversion gain (MCG) corresponding to the second capacitance.
    Type: Application
    Filed: May 20, 2022
    Publication date: December 1, 2022
    Inventors: Ken MIYAUCHI, Isao TAKAYANAGI
  • Publication number: 20220321759
    Abstract: A solid-state imaging device, a method for driving the same, and an electronic apparatus can achieve a high dynamic range based on multiple exposure technique, where images captured with different exposure durations are combined, with it being possible to prevent motion artifacts and LED flickers. A pixel has a 4:0 configuration. The pixel is divided into, for example, four sub-pixels all of which have the same color (for example, G (green)). An access control part sets different charge integration periods and different charge storage starting times between photoelectric conversion parts PD of the sub-pixels and controls the charge integration periods such that they overlap each other. In other words, the access control part sets different charge integration periods and different charge storage starting times, the number of which corresponds to the number of sub-pixels having the same color, and controls the charge integration periods such that they overlap each other.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 6, 2022
    Inventors: Ken MIYAUCHI, Kazuya MORI, Sangman HAN
  • Publication number: 20210099659
    Abstract: A pixel includes photoelectric conversion elements for generating charges through photoelectric conversion and storing the generated charges in a storing period, transfer elements for transferring the stored charges, an output node to which the charges stored in the photoelectric conversion elements are transferred through the transfer elements, an output buffer part for converting the charges in the output node into a voltage signal at a level determined by the amount of the charges, and a comparator for performing a comparing operation of comparing the voltage signal from the output buffer part against a referential voltage and outputting a digital comparison result signal. The comparator performs, under control of a reading part, the comparing operation on read-out signals read in at least two different modes through different sequences of operations for reading performed on charges stored in the different photoelectric conversion elements.
    Type: Application
    Filed: October 5, 2020
    Publication date: April 1, 2021
    Inventors: Ken MIYAUCHI, Kazuya MORI
  • Publication number: 20200027910
    Abstract: One object of the present invention is to provide a solid-state imaging device, a method for fabricating a solid-state imaging device, and an electronic apparatus that implement both a wide dynamic range and a high sensitivity. A storage capacitor serving as a storage capacitance element includes a first electrode and a second electrode on a second substrate surface side. The first electrode is formed of a p+ region (the second conductivity type semiconductor region) formed in the surface of a second substrate surface of a substrate, and the second electrode is formed above the second substrate surface so as to be opposed at a distance to the first electrode in the direction perpendicular to the substrate surface. The first electrode and the second electrode are arranged so as to spatially overlap with a photoelectric conversion part in the direction perpendicular to the substrate surface.
    Type: Application
    Filed: July 17, 2019
    Publication date: January 23, 2020
    Inventors: Shunsuke OKURA, Isao TAKAYANAGI, Kazuya MORI, Ken MIYAUCHI, Shigetoshi SUGAWA