Patents by Inventor Ken N. Sury

Ken N. Sury has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9283499
    Abstract: A feedwell system for delivering a slurry (for example a bituminous slurry) to a separation vessel (for example a primary separation vessel) includes a feedwell barrel with an inlet for receiving the slurry, internal baffles, and a bottom outlet. A downpipe extends from the bottom of the barrel directing the existing slurry onto a deflector plate deflecting the slurry radially and outwardly. A protector plate located between the downpipe and the deflector plate improves the underwash layer stability. Ventilation openings in the protector plate induce inflow which reduces the discharge velocity, limits the formation of an adverse pressure gradient and encourages circumferential distribution.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: March 15, 2016
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Ken N. Sury, Bharat Bhargava, Chadwick R. Larson, Trevor L. Hilderman, Mohammad R. Shariati, Darwin Edward Kiel
  • Patent number: 9188389
    Abstract: Systems and methods for dewatering mine tailings. The systems and methods include distributing a slurry of high permeability material on a sloped surface to define a high permeability layer and subsequently distributing a slurry of low permeability mine tailings on the high permeability layer to define a low permeability layer that is vertically above and in contact with the high permeability layer. The sloped surface defines a non-zero surface grade, and natural slopes of both the slurry of high permeability material and the slurry of low permeability mine tailings are within a threshold grade difference of the surface grade. In some embodiments, the systems and methods may include augmenting the slurry of high permeability material and/or augmenting the slurry of low permeability mine tailings to adjust the natural slope thereof.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: November 17, 2015
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Wei Ren, Ken N. Sury, David C. Rennard, Shahram Yazdanpanah
  • Patent number: 9089797
    Abstract: A method of delivering feed, for example a paraffinic solvent treated bitumen froth, to a separation vessel, for example a froth separation unit (FSU). The feed is delivered from one or more side inlets that may be substantially normal to, and flush with, the wall of the vessel. In contrast to certain conventional feed systems used in gravity separators which use a distributor plate to widely distribute the feed with a vessel, the feed is delivered such that it flows down the inside wall of the vessel. This feed delivery is characterized by a Richardson number of greater than 1.0. Such feed delivery is particularly useful where the feed has particles with a bi-modal size distribution to be separated from an overflow stream. The gentle flow serves to mitigate the upward flux of the smaller particles, for example mineral solids, by being trapped below the larger particles, for example precipitated asphaltene aggregates.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: July 28, 2015
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Clay R. Sutton, Ken N. Sury, Darwin Edward Kiel, John Khai-Quang Diep
  • Patent number: 8949038
    Abstract: Described herein is a method of controlling bitumen quality in a process stream within a solvent-assisted bitumen extraction operation, for instance a hydrocarbon stream from a froth separation unit (FSU). Bitumen quality is a measure of the amount of selected contaminants in the process stream. Contaminants may include asphaltenes (comprising metal porphyrins), sulfur, and inorganic solids (comprising inorganic elements, e.g. Si, Al, Ti, Fe, Na, K, Mg, and Ca). First, the amounts of selected contaminants are measured. Next, these measured values are compared to maximum reference values. If one or more of these contaminants is higher than the maximum reference value, at least one variable of the solvent-assisted bitumen extraction is adjusted to improve bitumen quality.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: February 3, 2015
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Tapantosh Chakrabarty, Ken N. Sury, Joseph L. Feimer
  • Publication number: 20140305000
    Abstract: Systems and methods for dewatering mine tailings with water-absorbing polymers. The systems and methods may include combining a mine tailings slurry, which includes mine tailings and water, with a water-absorbing polymer. The water-absorbing polymer may absorb water from the mine tailings, thereby increasing a solids content of the mine tailings. The mine tailings may be combined with the water-absorbing polymer prior to, during, and/or subsequent to transfer of the mine tailings to a mine tailings dewatering and/or disposal site. In some embodiments, the water-absorbing polymer may be an encapsulated water-absorbing polymer.
    Type: Application
    Filed: March 12, 2014
    Publication date: October 16, 2014
    Inventors: Wei Ren, Ken N. Sury, Paul L. Tanaka, David C. Rennard, Scott R. Clingman, Thomas R. Palmer
  • Publication number: 20140305001
    Abstract: Systems and methods for dewatering mine tailings. The systems and methods include distributing a slurry of high permeability material on a sloped surface to define a high permeability layer and subsequently distributing a slurry of low permeability mine tailings on the high permeability layer to define a low permeability layer that is vertically above and in contact with the high permeability layer. The sloped surface defines a non-zero surface grade, and natural slopes of both the slurry of high permeability material and the slurry of low permeability mine tailings are within a threshold grade difference of the surface grade. In some embodiments, the systems and methods may include augmenting the slurry of high permeability material and/or augmenting the slurry of low permeability mine tailings to adjust the natural slope thereof.
    Type: Application
    Filed: March 12, 2014
    Publication date: October 16, 2014
    Inventors: Wei Ren, Ken N. Sury, David C. Rennard, Shahram Yazdanpanah
  • Patent number: 8701470
    Abstract: A method and system for determining particle size distribution and/or filterable solids in bitumen-containing fluid is described. A sample of bitumen-containing fluid, such as bitumen-froth feed, bitumen-froth solvent or paraffinic-froth-treated (PFT) bitumen-solvent is obtained. An optimized diluent combination is determined, comprising an aromatic or cycloaliphatic solvent such as toluene, benzene, naphthalene, xylene, anthracene, or cyclohexane together with a C3 to C12 paraffinic solvent. The combination is considered optimized when diluting the sample with the combination maintains substantially the same level of deasphalting in the diluted sample as in the undiluted sample. Upon dilution of the sample with optimized diluent combination, particle size distribution can be accurately determined using optical instrumentation, laser diffraction instrumentation, electrical counting instrumentation, or ultrasonic instrumentation.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: April 22, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Joseph L. Feimer, Ken N. Sury
  • Publication number: 20140041740
    Abstract: A method of delivering feed, for example a paraffinic solvent treated bitumen froth, to a separation vessel, for example a froth separation unit (FSU). The feed is delivered from one or more side inlets that may be substantially normal to, and flush with, the wall of the vessel. In contrast to certain conventional feed systems used in gravity separators which use a distributor plate to widely distribute the feed with a vessel, the feed is delivered such that it flows down the inside wall of the vessel. This feed delivery is characterized by a Richardson number of greater than 1.0. Such feed delivery is particularly useful where the feed has particles with a bi-modal size distribution to be separated from an overflow stream. The gentle flow serves to mitigate the upward flux of the smaller particles, for example mineral solids, by being trapped below the larger particles, for example precipitated asphaltene aggregates.
    Type: Application
    Filed: October 16, 2013
    Publication date: February 13, 2014
    Inventors: Clay R. Sutton, Ken N. Sury, Darwin Edward Kiel, John Khai-Quang Diep
  • Publication number: 20140008293
    Abstract: A feedwell system for delivering a slurry (for example a bituminous slurry) to a separation vessel (for example a primary separation vessel) includes a feedwell barrel with an inlet for receiving the slurry, internal baffles, and a bottom outlet. A downpipe extends from the bottom of the barrel directing the existing slurry onto a deflector plate deflecting the slurry radially and outwardly. A protector plate located between the downpipe and the deflector plate improves the underwash layer stability. Ventilation openings in the protector plate induce inflow which reduces the discharge velocity, limits the formation of an adverse pressure gradient and encourages circumferential distribution.
    Type: Application
    Filed: February 7, 2012
    Publication date: January 9, 2014
    Inventors: Ken N. Sury, Bharat Bhargava, Chadwick R. Larson, Trevor L. Hilderman, Mohammad R. Shariati, Darwin Edward Kiel
  • Patent number: 8591724
    Abstract: A method of delivering feed, for example a paraffinic solvent treated bitumen froth, to a separation vessel, for example a froth separation unit (FSU). The feed is delivered from one or more side inlets that may be substantially normal to, and flush with, the wall of the vessel. In contrast to certain conventional feed systems used in gravity separators which use a distributor plate to widely distribute the feed with a vessel, the feed is delivered such that it flows down the inside wall of the vessel. This feed delivery is characterized by a Richardson number of greater than 1.0. Such feed delivery is particularly useful where the feed has particles with a bi-modal size distribution to be separated from an overflow stream. The gentle flow serves to mitigate the upward flux of the smaller particles, for example mineral solids, by being trapped below the larger particles, for example precipitated asphaltene aggregates.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: November 26, 2013
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Clay R. Sutton, Ken N. Sury, Darwin Edward Kiel, John Khai-Quang Diep
  • Publication number: 20130168294
    Abstract: Described herein is a method of controlling bitumen quality in a process stream within a solvent-assisted bitumen extraction operation, for instance a hydrocarbon stream from a froth separation unit (FSU). Bitumen quality is a measure of the amount of selected contaminants in the process stream. Contaminants may include asphaltenes (comprising metal porphyrins), sulfur, and inorganic solids (comprising inorganic elements, e.g. Si, Al, Ti, Fe, Na, K, Mg, and Ca). First, the amounts of selected contaminants are measured. Next, these measured values are compared to maximum reference values. If one or more of these contaminants is higher than the maximum reference value, at least one variable of the solvent-assisted bitumen extraction is adjusted to improve bitumen quality.
    Type: Application
    Filed: June 23, 2011
    Publication date: July 4, 2013
    Inventors: Tapantosh Chakrabarty, Ken N. Sury, Joseph L. Feimer
  • Publication number: 20130140249
    Abstract: A method of delivering feed, for example a paraffinic solvent treated bitumen froth, to a separation vessel, for example a froth separation unit (FSU). The feed is delivered from one or more inlets into the side of a series of parallel plates that form a series of channels which may be either vertical or inclined at an intermediate angle. This feed inlet flow conditioning system is characterized by a Channel Reynolds number of less than 3000. Such inlet flow conditioning is particularly useful where the feed has particles with a bi-modal size distribution to be separated from an overflow stream. The low Reynolds number combined with the influence of the walls serves to mitigate the upward flux of the smaller particles, for example mineral solids, by trapping the smaller particles within a matrix of larger particles, for example precipitated asphaltene aggregates.
    Type: Application
    Filed: June 17, 2011
    Publication date: June 6, 2013
    Inventors: Ken N. Sury, Clay Robert Sutton, John Diep, Darwin Edward Kiel
  • Patent number: 8454821
    Abstract: A method and system for extracting hydrocarbon products from waste tailings of a froth flotation unit and a paraffinic froth treatment process are provided. Bitumen and asphaltenes from the waste tailings are extracted using a serial addition of an aromatic solvent, followed by a polar-non-polar solvent. The method and system divert valuable hydrocarbons from tailings ponds. The hydrocarbon product can be used as a coating material or an emulsion fuel, for example.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: June 4, 2013
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Tapantosh Chakrabarty, Ken N. Sury
  • Patent number: 8449764
    Abstract: In solvent-assisted bitumen extraction, a native marker, for example: sulfur, nickel, vanadium, iron copper, or manganese, is used to control the solvent to bitumen ratio in a process stream such as a stream from a froth separation unit (FSU) and/or to measure hydrocarbon loss in a tailings solvent recovery unit (TSRU).
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: May 28, 2013
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Tapantosh Chakrabarty, Ken N. Sury
  • Patent number: 8357291
    Abstract: The invention relates to an improved bitumen recovery process. The process includes adding water to a bitumen-froth/solvent system containing asphaltenes and mineral solids. The addition of water in droplets increases the settling rate of asphaltenes and mineral solids to more effectively treat the bitumen for pipeline transport, further enhancement, refining, or any other application of reduced-solids bitumen.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: January 22, 2013
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Ken N. Sury, Joseph L. Feimer, Clay R. Sutton
  • Publication number: 20110265558
    Abstract: A method and system for determining particle size distribution and/or filterable solids in bitumen-containing fluid is described. A sample of bitumen-containing fluid, such as bitumen-froth feed, bitumen-froth solvent or paraffinic-froth-treated (PFT) bitumen-solvent is obtained. An optimized diluent combination is determined, comprising an aromatic or cycloaliphatic solvent such as toluene, benzene, naphthalene, xylene, anthracene, or cyclohexane together with a C3 to C12 paraffinic solvent. The combination is considered optimized when diluting the sample with the combination maintains substantially the same level of deasphalting in the diluted sample as in the undiluted sample. Upon dilution of the sample with optimized diluent combination, particle size distribution can be accurately determined using optical instrumentation, laser diffraction instrumentation, electrical counting instrumentation, or ultrasonic instrumentation.
    Type: Application
    Filed: December 7, 2009
    Publication date: November 3, 2011
    Applicant: EXXONMOBIL UPSTREAM RESEARCH COMPANY
    Inventors: Joseph L. Feimer, Ken N. Sury
  • Publication number: 20110210044
    Abstract: A method and system for extracting hydrocarbon products from waste tailings of a froth flotation unit and a paraffinic froth treatment process are provided. Bitumen and asphaltenes from the waste tailings are extracted using a serial addition of an aromatic solvent, followed by a polar-non-polar solvent. The method and system divert valuable hydrocarbons from tailings ponds. The hydrocarbon product can be used as a coating material or an emulsion fuel, for example.
    Type: Application
    Filed: August 30, 2010
    Publication date: September 1, 2011
    Inventors: Tapantosh Chakrabarty, Ken N. Sury
  • Publication number: 20110011769
    Abstract: A method of delivering feed, for example a paraffinic solvent treated bitumen froth, to a separation vessel, for example a froth separation unit (FSU). The feed is delivered from one or more side inlets that may be substantially normal to, and flush with, the wall of the vessel. In contrast to certain conventional feed systems used in gravity separators which use a distributor plate to widely distribute the feed with a vessel, the feed is delivered such that it flows down the inside wall of the vessel. This feed delivery is characterized by a Richardson number of greater than 1.0. Such feed delivery is particularly useful where the feed has particles with a bi-modal size distribution to be separated from an overflow stream. The gentle flow serves to mitigate the upward flux of the smaller particles, for example mineral solids, by being trapped below the larger particles, for example precipitated asphaltene aggregates.
    Type: Application
    Filed: May 14, 2010
    Publication date: January 20, 2011
    Inventors: Clay R. Sutton, Ken N. Sury, Darwin Edward Kiel, John Khai-Quang Diep
  • Publication number: 20100126911
    Abstract: In solvent-assisted bitumen extraction, a native marker, for example: sulfur, nickel, vanadium, iron copper, or manganese, is used to control the solvent to bitumen ratio in a process stream such as a stream from a froth separation unit (FSU) and/or to measure hydrocarbon loss in a tailings solvent recovery unit (TSRU).
    Type: Application
    Filed: October 26, 2009
    Publication date: May 27, 2010
    Inventors: Tapantosh Chakrabarty, Ken N. Sury
  • Publication number: 20090200209
    Abstract: The invention relates to an improved bitumen recovery process. The process includes adding water to a bitumen-froth/solvent system containing asphaltenes and mineral solids. The addition of water in droplets increases the settling rate of asphaltenes and mineral solids to more effectively treat the bitumen for pipeline transport, further enhancement, refining, or any other application of reduced-solids bitumen.
    Type: Application
    Filed: December 19, 2008
    Publication date: August 13, 2009
    Inventors: Ken N. Sury, Joseph L. Feimer, Clay R. Sutton