Patents by Inventor Ken Stenton
Ken Stenton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20120273689Abstract: A microchannel plate for detecting neutrons includes a hydrogen-rich polymer substrate that defines a plurality of channels extending from a top surface of the substrate to a bottom surface of the substrate, where neutrons interact with the plurality of channels to generate at least one secondary electron. A top electrode is positioned on the top surface of the substrate and a bottom electrode is positioned on the bottom surface of the substrate. A resistive layer is formed over an outer surface of the plurality of channels that provides ohmic conduction with a resistivity that is substantially constant. An emissive layer is formed over the resistive layer. Neutron interaction products interact with the plurality of channels defined by the substrate and the emissive films to generate secondary electrons that cascade within the plurality of channels to provide an amplified signal related to the detection of neutrons.Type: ApplicationFiled: July 7, 2012Publication date: November 1, 2012Applicant: ARRADIANCE, INC.Inventors: Neal T. Sullivan, Anton Tremsin, Philippe de Rouffignac, David Beaulieu, Kourosh Saadatmand, Steve Bachman, Ken Stenton
-
Patent number: 8237129Abstract: A microchannel plate for detecting neutrons includes a hydrogen-rich polymer substrate that defines a plurality of channels extending from a top surface of the substrate to a bottom surface of the substrate, where neutrons interact with the plurality of channels to generate at least one secondary electron. A top electrode is positioned on the top surface of the substrate and a bottom electrode is positioned on the bottom surface of the substrate. A resistive layer is formed over an outer surface of the plurality of channels that provides ohmic conduction with a resistivity that is substantially constant. An emissive layer is formed over the resistive layer. Neutron interaction products interact with the plurality of channels defined by the substrate and the emissive films to generate secondary electrons that cascade within the plurality of channels to provide an amplified signal related to the detection of neutrons.Type: GrantFiled: February 24, 2009Date of Patent: August 7, 2012Assignee: Arradiance, Inc.Inventors: Neal T. Sullivan, Anton Tremsin, Philippe de Rouffignac, David Beaulieu, Kourosh Saadatmand, Steve Bachman, Ken Stenton, Dmitry Gorelikov
-
Patent number: 8134108Abstract: An image intensifying device includes a lens that is positioned at a light input that forms an image of a scene. The image intensifying device also includes an image intensifier tube that includes a photocathode that is positioned to receive the image formed by the lens. The photocathode generates photoelectrons in response to the light image of the scene. The image intensifier tube also includes a microchannel plate having an input surface comprising the photocathode. The microchannel plate receives the photoelectrons generated by the photocathode and generating secondary electrons. An electron detector receives the secondary electrons generated by the microchannel plate and generates an intensified image of the scene.Type: GrantFiled: June 1, 2011Date of Patent: March 13, 2012Assignee: Arradiance, Inc.Inventors: Neal T. Sullivan, Anton Tremsin, Ken Stenton, Philippe De Rouffignac
-
Publication number: 20110226933Abstract: An image intensifying device includes a lens that is positioned at a light input that forms an image of a scene. The image intensifying device also includes an image intensifier tube that includes a photocathode that is positioned to receive the image formed by the lens. The photocathode generates photoelectrons in response to the light image of the scene. The image intensifier tube also includes a microchannel plate having an input surface comprising the photocathode. The microchannel plate receives the photoelectrons generated by the photocathode and generating secondary electrons. An electron detector receives the secondary electrons generated by the microchannel plate and generates an intensified image of the scene.Type: ApplicationFiled: June 1, 2011Publication date: September 22, 2011Applicant: ARRADIANCE, INC.Inventors: Neal T. Sullivan, Anton Tremsin, Ken Stenton, Philippe De Rouffignac
-
Patent number: 7977617Abstract: An image intensifying device includes a lens that is positioned at a light input that forms an image of a scene. The image intensifying device also includes an image intensifier tube that includes a photocathode that is positioned to receive the image formed by the lens. The photocathode generates photoelectrons in response to the light image of the scene. The image intensifier tube also includes a microchannel plate having an input surface comprising the photocathode. The microchannel plate receives the photoelectrons generated by the photocathode and generating secondary electrons. An electron detector receives the secondary electrons generated by the microchannel plate and generates an intensified image of the scene.Type: GrantFiled: April 9, 2009Date of Patent: July 12, 2011Assignee: Arradiance, Inc.Inventors: Neal T. Sullivan, Anton Tremsin, Ken Stenton, Philippe De Rouffignac
-
Publication number: 20100044577Abstract: A microchannel plate for detecting neutrons includes a hydrogen-rich polymer substrate that defines a plurality of channels extending from a top surface of the substrate to a bottom surface of the substrate, where neutrons interact with the plurality of channels to generate at least one secondary electron. A top electrode is positioned on the top surface of the substrate and a bottom electrode is positioned on the bottom surface of the substrate. A resistive layer is formed over an outer surface of the plurality of channels that provides ohmic conduction with a resistivity that is substantially constant. An emissive layer is formed over the resistive layer. Neutron interaction products interact with the plurality of channels defined by the substrate and the emissive films to generate secondary electrons that cascade within the plurality of channels to provide an amplified signal related to the detection of neutrons.Type: ApplicationFiled: February 24, 2009Publication date: February 25, 2010Applicant: Arradiance, Inc.Inventors: Neal T. Sullivan, Anton Tremsin, Phiippe De Rouffignac, David Beaulieu, Kourosh Saadatmand, Steve Bachman, Ken Stenton
-
Publication number: 20090256063Abstract: An image intensifying device includes a lens that is positioned at a light input that forms an image of a scene. The image intensifying device also includes an image intensifier tube that includes a photocathode that is positioned to receive the image formed by the lens. The photocathode generates photoelectrons in response to the light image of the scene. The image intensifier tube also includes a microchannel plate having an input surface comprising the photocathode. The microchannel plate receives the photoelectrons generated by the photocathode and generating secondary electrons. An electron detector receives the secondary electrons generated by the microchannel plate and generates an intensified image of the scene.Type: ApplicationFiled: April 9, 2009Publication date: October 15, 2009Applicant: ARRADIANCE, INC.Inventors: Neal T. Sullivan, Anton Tremsin, Ken Stenton, Philippe De Rouffignac