Patents by Inventor Ken Takakura

Ken Takakura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11948754
    Abstract: A three-terminal capacitor includes a main body having a cylindrical or substantially cylindrical shape extending in a first direction and including first and second inner electrodes alternately laminated together with dielectric layers interposed therebetween, a pair of first outer electrodes on two end surfaces of the main body in the first direction and electrically connected to the first inner electrodes, and a second outer electrode electrically connected to the second inner electrodes. The main body includes a projecting portion projecting in a direction perpendicular or substantially perpendicular to the first direction at a position between the pair of first outer electrodes. The second outer electrode is provided on one surface of the projecting portion viewable when viewed in the first direction.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: April 2, 2024
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Shingo Ito, Koichi Ikeda, Ken Takakura, Satoshi Yoshida, Syuichi Nabekura, Takahiro Hirao, Masanori Nakamura, Kyosuke Uno, Haruhiko Ueno, Yohei Mukobata
  • Publication number: 20220130617
    Abstract: A three-terminal capacitor includes a main body having a cylindrical or substantially cylindrical shape extending in a first direction and including first and second inner electrodes alternately laminated together with dielectric layers interposed therebetween, a pair of first outer electrodes on two end surfaces of the main body in the first direction and electrically connected to the first inner electrodes, and a second outer electrode electrically connected to the second inner electrodes. The main body includes a projecting portion projecting in a direction perpendicular or substantially perpendicular to the first direction at a position between the pair of first outer electrodes. The second outer electrode is provided on one surface of the projecting portion viewable when viewed in the first direction.
    Type: Application
    Filed: October 14, 2021
    Publication date: April 28, 2022
    Inventors: Shingo ITO, Koichi IKEDA, Ken TAKAKURA, Satoshi YOSHIDA, Syuichi NABEKURA, Takahiro HIRAO, Masanori NAKAMURA, Kyosuke UNO, Haruhiko UENO, Yohei MUKOBATA
  • Patent number: 8545757
    Abstract: A sample treatment apparatus is designed to directly monitor a pressure signal from a pressure sensor to examine pressure fluctuations resulting from a sample's sway before a discharge of the sample, so that the discharge is performed after the confirmation of the absence of pressure changes. The apparatus has a detection function that allows a discharge to be started even before a pressure fluctuation vanishes completely, by allowing the operator to set a desired number of pressure monitorings, monitoring time, or pressure amplitude. The detection function also allows an alarm to be raised when a pressure fluctuation has not fallen within a given range. The sample treatment apparatus therefore allows discharge of more accurate amounts of samples.
    Type: Grant
    Filed: January 18, 2010
    Date of Patent: October 1, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yasushi Utsugi, Kuniaki Onizawa, Ken Takakura, Yoshio Kiyonari, Isao Yamazaki
  • Publication number: 20120039771
    Abstract: A sample treatment apparatus is designed to directly monitor a pressure signal from a pressure sensor to examine pressure fluctuations resulting from a sample's sway before a discharge of the sample, so that the discharge is performed after the confirmation of the absence of pressure changes. The apparatus has a detection function that allows a discharge to be started even before a pressure fluctuation vanishes completely, by allowing the operator to set a desired number of pressure monitorings, monitoring time, or pressure amplitude. The detection function also allows an alarm to be raised when a pressure fluctuation has not fallen within a given range. The sample treatment apparatus therefore allows discharge of more accurate amounts of samples.
    Type: Application
    Filed: January 18, 2010
    Publication date: February 16, 2012
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Yasushi Utsugi, Kuniaki Onizawa, Ken Takakura, Yoshio Kiyonari, Isao Yamazaki
  • Patent number: 6320301
    Abstract: A piezoelectric-transformer inverter includes a piezoelectric transformer for supplying a transformed voltage to a load connected to a secondary electrode thereof. A first coil and a first transistor are connected to one primary electrode of the piezoelectric transformer, and a second coil and a second transistor are connected to the other primary electrode of the piezoelectric transformer. The first and second transistors are alternately turned on and off such that the phase of the voltage applied between the primary electrodes is reversed cyclically. The operation frequency is controlled such that an AC current flowing through the load is maintained at a predetermined level. The piezoelectric transformer has a piezoelectric substrate. In a first half region of the piezoelectric substrate, a plurality of electrode films are layered in order to form the primary electrodes. The secondary electrode is formed on an end surface of the piezoelectric substrate opposite to the primary electrodes.
    Type: Grant
    Filed: April 14, 1999
    Date of Patent: November 20, 2001
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Takashi Noma, Ken Takakura, Yasuyuki Morishima