Patents by Inventor Ken-Yu Chang

Ken-Yu Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11521929
    Abstract: The present disclosure describes a method for forming capping layers configured to prevent the migration of out-diffused cobalt atoms into upper metallization layers In some embodiments, the method includes depositing a cobalt diffusion barrier layer on a liner-free conductive structure that includes ruthenium, where depositing the cobalt diffusion barrier layer includes forming the cobalt diffusion barrier layer self-aligned to the liner-free conductive structure. The method also includes depositing, on the cobalt diffusion barrier layer, a stack with an etch stop layer and dielectric layer, and forming an opening in the stack to expose the cobalt diffusion barrier layer. Finally, the method includes forming a conductive structure on the cobalt diffusion barrier layer.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: December 6, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shuen-Shin Liang, Chun-I Tsai, Chih-Wei Chang, Chun-Hsien Huang, Hung-Yi Huang, Keng-Chu Lin, Ken-Yu Chang, Sung-Li Wang, Chia-Hung Chu, Hsu-Kai Chang
  • Publication number: 20220367662
    Abstract: The present disclosure describes a method for forming liner-free or barrier-free conductive structures. The method includes forming a liner-free conductive structure on a cobalt conductive structure disposed on a substrate, depositing a cobalt layer on the liner-free conductive structure and exposing the liner-free conductive structure to a heat treatment. The method further includes removing the cobalt layer from the liner-free conductive structure.
    Type: Application
    Filed: July 28, 2022
    Publication date: November 17, 2022
    Applicant: Taiwan Semiconductor Manufacturing, Co., Ltd.
    Inventors: Shuen-Shin Liang, Chun-I Tsai, Chih-Wei Chang, Chun-Hsien Huang, Hung-Yi Huang, Keng-Chu Lin, Ken-Yu Chang, Sung-Li Wang, Chia-Hung Chu, Hsu-Kai Chang
  • Publication number: 20220301858
    Abstract: A method of forming a semiconductor device includes forming a first conductive feature on a bottom surface of an opening through a dielectric layer. The forming the first conductive feature leaves seeds on sidewalls of the opening. A treatment process is performed on the seeds to form treated seeds. The treated seeds are removed with a cleaning process. The cleaning process may include a rinse with deionized water. A second conductive feature is formed to fill the opening.
    Type: Application
    Filed: March 18, 2021
    Publication date: September 22, 2022
    Inventors: Cheng-Wei Chang, Min-Hsiu Hung, Chun-I Tsai, Ken-Yu Chang, Yi-Ying Liu
  • Publication number: 20220189825
    Abstract: A semiconductor device includes a substrate, two semiconductor fins protruding from the substrate, an epitaxial feature over the two semiconductor fins and connected to the two semiconductor fins, a silicide layer over the epitaxial feature, a barrier layer over the silicide layer, and a metal layer over the barrier layer. The barrier layer includes a metal nitride. Along a boundary between the barrier layer and the metal layer, an atomic ratio of oxygen to metal nitride is about 0.15 to about 1.0.
    Type: Application
    Filed: February 21, 2022
    Publication date: June 16, 2022
    Inventors: Cheng-Wei Chang, Yu-Ming Huang, Ethan Tseng, Ken-Yu Chang, Yi-Ying Liu
  • Publication number: 20220130755
    Abstract: The present disclosure provides an interconnect structure and a method for forming an interconnect structure. The method for forming an interconnect structure includes forming a bottom metal line in a first interlayer dielectric layer, forming a second interlayer dielectric layer over the bottom metal line, exposing a top surface of the bottom metal line, increasing a total surface area of the exposed top surface of the bottom metal line, forming a conductive via over the bottom metal line, and forming a top metal line over the conductive via.
    Type: Application
    Filed: January 3, 2022
    Publication date: April 28, 2022
    Inventors: SHUEN-SHIN LIANG, KEN-YU CHANG, HUNG-YI HUANG, CHIEN CHANG, CHI-HUNG CHUANG, KAI-YI CHU, CHUN-I TSAI, CHUN-HSIEN HUANG, CHIH-WEI CHANG, HSU-KAI CHANG, CHIA-HUNG CHU, KENG-CHU LIN, SUNG-LI WANG
  • Patent number: 11257712
    Abstract: A method includes providing a structure that includes a semiconductor substrate, an epitaxial source/drain feature over the semiconductor substrate, and one or more dielectric layers over the epitaxial source/drain feature; etching a hole into the one or more dielectric layer to expose a portion of the epitaxial source/drain feature; forming a silicide layer over the portion of the epitaxial source/drain feature; forming a conductive barrier layer over the silicide layer; and applying a plasma cleaning process to at least the conductive barrier layer, wherein the plasma cleaning process uses a gas mixture including N2 gas and H2 gas and is performed at a temperature that is at least 300° C.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: February 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Wei Chang, Yu-Ming Huang, Ethan Tseng, Ken-Yu Chang, Yi-Ying Liu
  • Patent number: 11217524
    Abstract: The present disclosure provides an interconnect structure, including a first interlayer dielectric layer, a bottom metal line including a first metal in the first interlayer dielectric layer, a conductive via including a second metal over the bottom metal line, wherein the second metal is different from the first metal, and the first metal has a first type of primary crystalline structure, and the second metal has the first type of primary crystalline structure, a total area of a bottom surface of the conductive via is greater than a total cross sectional area of the conductive via, and a top metal line over the conductive via, wherein the top metal line comprises a third metal different from the second metal.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: January 4, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Shuen-Shin Liang, Ken-Yu Chang, Hung-Yi Huang, Chien Chang, Chi-Hung Chuang, Kai-Yi Chu, Chun-I Tsai, Chun-Hsien Huang, Chih-Wei Chang, Hsu-Kai Chang, Chia-Hung Chu, Keng-Chu Lin, Sung-Li Wang
  • Publication number: 20210391252
    Abstract: The present disclosure provides an interconnect structure, including a first interlayer dielectric layer, a bottom metal line including a first metal in the first interlayer dielectric layer, a conductive via including a second metal over the bottom metal line, wherein the second metal is different from the first metal, and the first metal has a first type of primary crystalline structure, and the second metal has the first type of primary crystalline structure, a total area of a bottom surface of the conductive via is greater than a total cross sectional area of the conductive via, and a top metal line over the conductive via, wherein the top metal line comprises a third metal different from the second metal.
    Type: Application
    Filed: June 12, 2020
    Publication date: December 16, 2021
    Inventors: SHUEN-SHIN LIANG, KEN-YU CHANG, HUNG-YI HUANG, CHIEN CHANG, CHI-HUNG CHUANG, KAI-YI CHU, CHUN-I TSAI, CHUN-HSIEN HUANG, CHIH-WEI CHANG, HSU-KAI CHANG, CHIA-HUNG CHU, KENG-CHU LIN, SUNG-LI WANG
  • Patent number: 11195791
    Abstract: A method for forming a semiconductor contact structure is provided. The method includes depositing a dielectric layer over a substrate. The method also includes etching the dielectric layer to expose a sidewall of the dielectric layer and a top surface of the substrate. In addition, the method includes forming a silicide region in the substrate. The method also includes applying a plasma treatment to the sidewall of the dielectric layer and the top surface of the substrate to form a nitridation region adjacent to a periphery of the silicide region. The method further includes depositing an adhesion layer on the dielectric layer and the silicide region.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: December 7, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Wen Cheng, Wei-Yip Loh, Yu-Hsiang Liao, Sheng-Hsuan Lin, Hong-Mao Lee, Chun-I Tsai, Ken-Yu Chang, Wei-Jung Lin, Chih-Wei Chang, Ming-Hsing Tsai
  • Publication number: 20210376103
    Abstract: The present disclosure describes a method for forming liner-free or barrier-free conductive structures. The method includes forming a liner-free conductive structure on a cobalt conductive structure disposed on a substrate, depositing a cobalt layer on the liner-free conductive structure and exposing the liner-free conductive structure to a heat treatment. The method further includes removing the cobalt layer from the liner-free conductive structure.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 2, 2021
    Applicant: Taiwan Semiconductor Manufacturing, Co., Ltd.
    Inventors: Shuen-Shin LIANG, Chun-I TSAI, Chih-Wei CHANG, Chun-Hsien HUANG, Hung-Yi HUANG, Keng-Chu LIN, Ken-Yu CHANG, Sung-Li WANG, Chia-Hung CHU, Hsu-Kai CHANG
  • Publication number: 20210358804
    Abstract: A method includes providing a structure that includes a semiconductor substrate, an epitaxial source/drain feature over the semiconductor substrate, and one or more dielectric layers over the epitaxial source/drain feature; etching a hole into the one or more dielectric layer to expose a portion of the epitaxial source/drain feature; forming a silicide layer over the portion of the epitaxial source/drain feature; forming a conductive barrier layer over the silicide layer; and applying a plasma cleaning process to at least the conductive barrier layer, wherein the plasma cleaning process uses a gas mixture including N2 gas and H2 gas and is performed at a temperature that is at least 300° C.
    Type: Application
    Filed: May 13, 2020
    Publication date: November 18, 2021
    Inventors: Cheng-Wei Chang, Yu-Ming Huang, Ethan Tseng, Ken-Yu Chang, Yi-Ying Liu
  • Publication number: 20210343590
    Abstract: Generally, the present disclosure provides example embodiments relating to conductive features, such as metal contacts, vias, lines, etc., and methods for forming those conductive features. In an embodiment, a barrier layer is formed along a sidewall. A portion of the barrier layer along the sidewall is etched back by a wet etching process. After etching back the portion of the barrier layer, an underlying dielectric welding layer is exposed. A conductive material is formed along the barrier layer.
    Type: Application
    Filed: July 12, 2021
    Publication date: November 4, 2021
    Inventors: Ken-Yu Chang, Chun-I Tsai, Ming-Hsing Tsai, Wei-Jung Lin
  • Publication number: 20210335720
    Abstract: The present disclosure describes a method for forming capping layers configured to prevent the migration of out-diffused cobalt atoms into upper metallization layers In some embodiments, the method includes depositing a cobalt diffusion barrier layer on a liner-free conductive structure that includes ruthenium, where depositing the cobalt diffusion barrier layer includes forming the cobalt diffusion barrier layer self-aligned to the liner-free conductive structure. The method also includes depositing, on the cobalt diffusion barrier layer, a stack with an etch stop layer and dielectric layer, and forming an opening in the stack to expose the cobalt diffusion barrier layer. Finally, the method includes forming a conductive structure on the cobalt diffusion barrier layer.
    Type: Application
    Filed: January 5, 2021
    Publication date: October 28, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shuen-Shin LIANG, Chun-I TSAI, Chih-Wei CHANG, Chun-Hsien HUANG, Hung-Yi HUANG, Keng-Chu LIN, Ken-Yu CHANG, Sung-Li WANG, Chia-Hung CHU, Hsu-Kai CHANG
  • Publication number: 20210280462
    Abstract: The present disclosure describes a method to a metallization process with improved gap fill properties. The method includes forming a contact opening in an oxide, forming a barrier layer in the contact opening, forming a liner layer on the barrier layer, and forming a first metal layer on the liner layer to partially fill the contact opening. The method further includes forming a second metal layer on the first metal layer to fill the contact opening, where forming the second metal layer includes sputter depositing the second metal layer with a first radio frequency (RF) power and a direct current power, as well as reflowing the second metal layer with a second RF power.
    Type: Application
    Filed: March 29, 2021
    Publication date: September 9, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tien-Pei CHOU, Ken-Yu CHANG, Sheng-Hsuan LIN, Yueh-Ching PAI, Yu-Ting LIN
  • Publication number: 20210225701
    Abstract: Generally, the present disclosure provides example embodiments relating to conductive features, such as metal contacts, vias, lines, etc., and methods for forming those conductive features. In an embodiment, a barrier layer is formed along a sidewall. A portion of the barrier layer along the sidewall is etched back. After etching back the portion of the barrier layer, an upper portion of the barrier layer along the sidewall is smoothed. A conductive material is formed along the barrier layer and over the smoothed upper portion of the barrier layer.
    Type: Application
    Filed: April 5, 2021
    Publication date: July 22, 2021
    Inventors: Yu Shih Wang, Chun-I Tsai, Shian Wei Mao, Ken-Yu Chang, Ming-Hsing Tsai, Wei-Jung Lin
  • Patent number: 11062941
    Abstract: Generally, the present disclosure provides example embodiments relating to conductive features, such as metal contacts, vias, lines, etc., and methods for forming those conductive features. In an embodiment, a barrier layer is formed along a sidewall. A portion of the barrier layer along the sidewall is etched back by a wet etching process. After etching back the portion of the barrier layer, an underlying dielectric welding layer is exposed. A conductive material is formed along the barrier layer.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: July 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ken-Yu Chang, Chun-I Tsai, Ming-Hsing Tsai, Wei-Jung Lin
  • Patent number: 10971396
    Abstract: Generally, the present disclosure provides example embodiments relating to conductive features, such as metal contacts, vias, lines, etc., and methods for forming those conductive features. In an embodiment, a barrier layer is formed along a sidewall. A portion of the barrier layer along the sidewall is etched back. After etching back the portion of the barrier layer, an upper portion of the barrier layer along the sidewall is smoothed. A conductive material is formed along the barrier layer and over the smoothed upper portion of the barrier layer.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: April 6, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu Shih Wang, Chun-I Tsai, Shian Wei Mao, Ken-Yu Chang, Ming-Hsing Tsai, Wei-Jung Lin
  • Patent number: 10964590
    Abstract: The present disclosure describes a method to a metallization process with improved gap fill properties. The method includes forming a contact opening in an oxide, forming a barrier layer in the contact opening, forming a liner layer on the barrier layer, and forming a first metal layer on the liner layer to partially fill the contact opening. The method further includes forming a second metal layer on the first metal layer to fill the contact opening, where forming the second metal layer includes sputter depositing the second metal layer with a first radio frequency (RF) power and a direct current power, as well as reflowing the second metal layer with a second RF power.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: March 30, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tien-Pei Chou, Ken-Yu Chang, Sheng-Hsuan Lin, Yueh-Ching Pai, Yu-Ting Lin
  • Publication number: 20200203222
    Abstract: Generally, the present disclosure provides example embodiments relating to conductive features, such as metal contacts, vias, lines, etc., and methods for forming those conductive features. In an embodiment, a barrier layer is formed along a sidewall. A portion of the barrier layer along the sidewall is etched back by a wet etching process. After etching back the portion of the barrier layer, an underlying dielectric welding layer is exposed. A conductive material is formed along the barrier layer.
    Type: Application
    Filed: March 2, 2020
    Publication date: June 25, 2020
    Inventors: Ken-Yu Chang, Chun-I Tsai, Ming-Hsing Tsai, Wei-Jung Lin
  • Publication number: 20200111739
    Abstract: A method for forming a semiconductor contact structure is provided. The method includes depositing a dielectric layer over a substrate. The method also includes etching the dielectric layer to expose a sidewall of the dielectric layer and a top surface of the substrate. In addition, the method includes forming a silicide region in the substrate. The method also includes applying a plasma treatment to the sidewall of the dielectric layer and the top surface of the substrate to form a nitridation region adjacent to a periphery of the silicide region. The method further includes depositing an adhesion layer on the dielectric layer and the silicide region.
    Type: Application
    Filed: December 9, 2019
    Publication date: April 9, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Wen CHENG, Wei-Yip LOH, Yu-Hsiang LIAO, Sheng-Hsuan LIN, Hong-Mao LEE, Chun-I TSAI, Ken-Yu CHANG, Wei-Jung LIN, Chih-Wei CHANG, Ming-Hsing TSAI