Patents by Inventor Kendall R. Kirk

Kendall R. Kirk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11425863
    Abstract: Yield monitoring systems for round baling machines and methods that can provide weight estimations for round bales at the time of formation are described. Balers can include those that incorporate hydraulically actuated bale kicking or pushing assemblies as well as those that incorporate spring-loaded off ramps. Farm implements including baling machines and cotton module builders are encompassed. The system includes a sensor that can ascertain a physical parameter associated with ejection of a round bale from the farm implement. Physical parameters as may be ascertained can include pressures, velocities, accelerations, etc. associated with bale ejection.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: August 30, 2022
    Assignee: Clemson University Research Foundation
    Inventors: Kendall R. Kirk, H. Guy Ramsey, IV, Perry J. Loftis
  • Patent number: 10827667
    Abstract: Disclosed are methods and systems for determining the amount of material contained in a windrow. In particular embodiments, the methods and systems are applicable to agricultural applications, and in particular to hay yield monitoring. Systems include a remote sensing technology to determine windrow height. Remote sensing methods can include ultrasonic sensors, optical sensors, and the like. Systems can provide real time yield data.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: November 10, 2020
    Assignee: Clemson University Research Foundation
    Inventors: Kendall R. Kirk, H. Guy Ramsey, IV
  • Publication number: 20190110389
    Abstract: Disclosed are methods and systems for determining the amount of material contained in a windrow. In particular embodiments, the methods and systems are applicable to agricultural applications, and in particular to hay yield monitoring. Systems include a remote sensing technology to determine windrow height. Remote sensing methods can include ultrasonic sensors, optical sensors, and the like. Systems can provide real time yield data.
    Type: Application
    Filed: December 13, 2018
    Publication date: April 18, 2019
    Applicant: Clemson University Research Foundation
    Inventors: Kendall R. Kirk, H. Guy Ramsey, IV
  • Patent number: 10188025
    Abstract: Disclosed are methods and systems for determining the amount of material contained in a windrow. In particular embodiments, the methods and systems are applicable to agricultural applications, and in particular to hay yield monitoring. Systems include a remote sensing technology to determine windrow height. Remote sensing methods can include ultrasonic sensors, optical sensors, and the like. Systems can provide real time yield data.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: January 29, 2019
    Assignee: Clemson University Research Foundation
    Inventors: Kendall R. Kirk, H. Guy Ramsey, IV
  • Patent number: 9968027
    Abstract: Methods and devices for automated adjustment of a digging implement during harvest of underground crops are described. Utilizing the devices, a digging implement, e.g., a blade, can be located and maintained at a desired depth as a harvester travels across a field. During use, the digging implement depth controls can be varied as the harvester travels within a single field under different operating conditions, e.g., different soil friability, consistency, etc., thereby preventing crop loss and improving crop yield.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: May 15, 2018
    Assignee: Clemson University
    Inventors: Kendall R. Kirk, J. Warren White, Joel S. Peele, W. Scott Monfort, Hunter F. Massey, James S. Thomas, Stanley A. Brantley, Andrew C. Warner
  • Patent number: 9958301
    Abstract: Yield monitoring systems for harvesting machines and methods that can provide yield monitoring of crops are described. Machines include those that pneumatically convey crop through the machine such as peanut harvesting machines. The yield monitoring system includes a force sensor that can be located in conjunction with a duct of the harvesting machine such that impact of the crop materials on an impact plate within the duct will be registered by the force sensor. This registration can be used to determine a mass flow rate for the crop, which can be correlated to yield of the crop. The systems can include additional components such as optical monitors, moisture sensors, and pressure sensors.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: May 1, 2018
    Assignee: Clemson University
    Inventors: Kendall R. Kirk, J. Warren White, W. Scott Monfort, Hunter F. Massey, D. Hollens Free, Stanley A. Brantley, Joel S. Peele, Jacob B. Fravel, William G. Henderson, Jr.
  • Publication number: 20170013772
    Abstract: Disclosed are methods and systems for determining the amount of material contained in a windrow. In particular embodiments, the methods and systems are applicable to agricultural applications, and in particular to hay yield monitoring. Systems include a remote sensing technology to determine windrow height. Remote sensing methods can include ultrasonic sensors, optical sensors, and the like. Systems can provide real time yield data.
    Type: Application
    Filed: July 14, 2016
    Publication date: January 19, 2017
    Inventors: Kendall R. Kirk, H. Guy Ramsey, IV
  • Publication number: 20170013783
    Abstract: Yield monitoring systems for round baling machines and methods that can provide weight estimations for round bales at the time of formation are described. Balers can include those that incorporate hydraulically actuated bale kicking or pushing assemblies as well as those that incorporate spring-loaded off ramps. Farm implements including baling machines and cotton module builders are encompassed. The system includes a sensor that can ascertain a physical parameter associated with ejection of a round bale from the farm implement. Physical parameters as may be ascertained can include pressures, velocities, accelerations, etc. associated with bale ejection.
    Type: Application
    Filed: July 14, 2016
    Publication date: January 19, 2017
    Inventors: Kendall R. Kirk, H. Guy Ramsey, IV, Perry J. Loftis
  • Publication number: 20170013773
    Abstract: Methods and devices for automated adjustment of a digging implement during harvest of underground crops are described. Utilizing the devices, a digging implement, e.g., a blade, can be located and maintained at a desired depth as a harvester travels across a field. During use, the digging implement depth controls can be varied as the harvester travels within a single field under different operating conditions, e.g., different soil friability, consistency, etc., thereby preventing crop loss and improving crop yield.
    Type: Application
    Filed: July 14, 2016
    Publication date: January 19, 2017
    Inventors: Kendall R. Kirk, J. Warren White, Joel S. Peele, W. Scott Monfort, Hunter F. Massey, James S. Thomas, Stanley A. Brantley, Andrew C. Warner
  • Publication number: 20160011024
    Abstract: Yield monitoring systems for harvesting machines and methods that can provide yield monitoring of crops are described. Machines include those that pneumatically convey crop through the machine such as peanut harvesting machines. The yield monitoring system includes a force sensor that can be located in conjunction with a duct of the harvesting machine such that impact of the crop materials on an impact plate within the duct will be registered by the force sensor. This registration can be used to determine a mass flow rate for the crop, which can be correlated to yield of the crop. The systems can include additional components such as optical monitors, moisture sensors, and pressure sensors.
    Type: Application
    Filed: July 9, 2015
    Publication date: January 14, 2016
    Inventors: Kendall R. Kirk, J. Warren White, W. Scott Monfort, Hunter F. Massey, D. Hollens Free, Stanley A. Brantley, Joel S. Peele, Jacob B. Fravel, William G. Henderson, JR.