Patents by Inventor Keng-Hui Liao

Keng-Hui Liao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220406608
    Abstract: A method includes providing a substrate of a first conductivity type, the substrate including a first circuit region and a second circuit region; forming a first well region of a second conductivity type in the first circuit region of the substrate; forming a first doped region of the second conductivity type in the first well region; forming a diode in the second circuit region of the substrate; forming a first transistor and a second transistor over the substrate in the first circuit region and the second circuit region, respectively; forming a discharge structure over the substrate to electrically couple the first doped region to the diode; and forming a metallization layer over the discharge structure to electrically couple the first transistor to the second transistor subsequent to the forming of the diode, wherein charges accumulated in the first well region are drained to the substrate through the discharge structure.
    Type: Application
    Filed: June 18, 2021
    Publication date: December 22, 2022
    Inventors: YAO-JEN TSAI, KENG-HUI LIAO, CHIH-KAI YANG, CHIH-FU CHANG, CHIA-JEN LEU, CHIN-YUAN KO
  • Patent number: 6604853
    Abstract: An accelerated thermal stress cycle test which can be conducted in a significantly reduced test time compared to the conventional test is provided. The test is carried out in a cluster of reaction chambers that includes a CVD chamber and a cool-down chamber such that a pre-processed wafer can be heated from room temperature to at least 350° C. in an inert gas in about 2 min., and then cooled down to not higher than 70° C. in a cool-down chamber in less than 30 sec. The heating and cooling steps can be repeated between 3 and 7 times to reveal any defect formation caused by the thermal stress cycle test. Typical defects are metal film peeling from insulating dielectric material layer or void formation.
    Type: Grant
    Filed: October 11, 2001
    Date of Patent: August 12, 2003
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Ying-Chen Chao, Wi William Lee, Sen-Shan Yang, Keng-Hui Liao
  • Publication number: 20030072350
    Abstract: An accelerated thermal stress cycle test which can be conducted in a significantly reduced test time compared to the conventional test is provided. The test is carried out in a cluster of reaction chambers that includes a CVD chamber and a cool-down chamber such that a pre-processed wafer can be heated from room temperature to at least 350° C. in an inert gas in about 2 min., and then cooled down to not higher than 70° C. in a cool-down chamber in less than 30 sec. The heating and cooling steps can be repeated between 3 and 7 times to reveal any defect formation caused by the thermal stress cycle test. Typical defects are metal film peeling from insulating dielectric material layer or void formation.
    Type: Application
    Filed: October 11, 2001
    Publication date: April 17, 2003
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ying-Chen Chao, Wei William Lee, Sen-Shan Yang, Keng-Hui Liao
  • Patent number: 6110810
    Abstract: A method of forming channel for metal oxidation semiconductor in the integrated circuits. The manufacturing process is as following: a layer of amorphous silicon is deposited after forming the gate oxide, and ion implantation for forming channel is performed, then a doped polysilicon layer and a silicide layer are deposited orderly, finally the whole structure is defined to form a gate electrode. The key point of the current invention is the addition of amorphous silicon. This amorphous silicon can prevent the direct bombardment of implanted ions to the gate oxide, it can also avoid the diffusion of polysilicon dopant into the gate oxide, therefore, the electrical properties of transistor will be made stable. In addition, the native oxide spontaneously produced between amorphous silicon and polysilicon along with process is very even and plain, it is profitable to planarization when subsequently depositing other layers.
    Type: Grant
    Filed: July 2, 1998
    Date of Patent: August 29, 2000
    Assignee: Mosel Vitelic Inc.
    Inventors: Chien-Hung Chen, Keng-Hui Liao, Martin Lin