Patents by Inventor Keng-Ku Liu

Keng-Ku Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11464487
    Abstract: A sensor system includes a sensor module that is embedded in a target environment and a signal system. The sensor module includes an active sensor of a first type that detects a target element in the target environment and a reference sensor of the first type that prevents detection of target elements by the reference sensor. The active sensor and the reference sensor receive an ultrasonic signal and respectively generate a first response signal and a second response signal. The first response signal is at least partially as a function of the detected target element. The signal system includes an ultrasonic transducer that generates the ultrasonic signal and receives the first and second response signals, and a controller communicatively coupled to the ultrasonic transducer. The controller identifies the detected target element based at least partially on the first and second response signals.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: October 11, 2022
    Assignee: Washington University
    Inventors: Shantanu Chakrabartty, Yarub Alazzawi, Srikanth Signamaneni, Keng-Ku Liu, Mingquan Yuan
  • Publication number: 20220260561
    Abstract: Provided are devices, kits, and methods for rapid detection of analytes of interest, such as drugs of abuse, at comparatively low concentrations. The technology includes competitive assay lateral flow devices that utilize a nanoparticle-antibody complex to provide a visually-perceptible marker upon contact with a sample having above a cutoff level of analyte.
    Type: Application
    Filed: July 13, 2020
    Publication date: August 18, 2022
    Inventors: Ping WANG, Zhao LI, Hui CHEN, Keng-Ku LIU
  • Patent number: 10241110
    Abstract: Plasmonic nanotransducers, methods of preparing plasmonic nanotransducers, and methods for label-free detection of target molecules are disclosed. The plasmonic nanotransducers include hollow nanostructure cores and artificial antibodies. The plasmonic nanotransducers are exposed to a biological sample that can contain the specific target molecules. The plasmonic nanotransducers can be analyzed with surface enhanced Raman scattering techniques and/or localized surface plasmon resonance techniques to quantify the amount of the target molecule in the sample.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: March 26, 2019
    Assignee: Washington University in St. Louis
    Inventors: Srikanth Singamaneni, Limei Tian, Keng-Ku Liu, Abdennour Abbas, Jeremiah J. Morrissey, Evan D. Kharasch
  • Publication number: 20190000419
    Abstract: A sensor system includes a sensor module that is embedded in a target environment and a signal system. The sensor module includes an active sensor of a first type that detects a target element in the target environment and a reference sensor of the first type that prevents detection of target elements by the reference sensor. The active sensor and the reference sensor receive an ultrasonic signal and respectively generate a first response signal and a second response signal. The first response signal is at least partially as a function of the detected target element. The signal system includes an ultrasonic transducer that generates the ultrasonic signal and receives the first and second response signals, and a controller communicatively coupled to the ultrasonic transducer. The controller identifies the detected target element based at least partially on the first and second response signals.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 3, 2019
    Applicant: Washington University
    Inventors: Shantanu Chakrabartty, Yarub Alazzawi, Srikanth Signamaneni, Keng-Ku Liu, Mingquan Yuan
  • Publication number: 20160282341
    Abstract: Plasmonic nanotransducers, methods of preparing plasmonic nanotransducers, and methods for label-free detection of target molecules are disclosed. The plasmonic nanotransducers include hollow nanostructure cores and artificial antibodies. The plasmonic nanotransducers are exposed to a biological sample that can contain the specific target molecules. The plasmonic nanotransducers can be analyzed with surface enhanced Raman scattering techniques and/or localized surface plasmon resonance techniques to quantify the amount of the target molecule in the sample.
    Type: Application
    Filed: October 17, 2014
    Publication date: September 29, 2016
    Inventors: Srikanth Singamaneni, Limei Tian, Keng-Ku Liu, Abdennour Abbas, Jeremiah J. Morrissey, Evan D. Kharasch
  • Patent number: 8685843
    Abstract: Graphene layers can be formed on a dielectric substrate using a process that includes forming a copper thin film on a dielectric substrate; diffusing carbon atoms through the copper thin film; and forming a graphene layer at an interface between the copper thin film and the dielectric substrate.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: April 1, 2014
    Assignee: Academia Sinica
    Inventors: Lain-Jong Li, Ching-Yuan Su, Ang-Yu Lu, Chih-Yu Wu, Keng-Ku Liu
  • Publication number: 20130001515
    Abstract: Graphene layers can be formed on a dielectric substrate using a process that includes forming a copper thin film on a dielectric substrate; diffusing carbon atoms through the copper thin film; and forming a graphene layer at an interface between the copper thin film and the dielectric substrate.
    Type: Application
    Filed: January 9, 2012
    Publication date: January 3, 2013
    Inventors: Lain-Jong Li, Ching-Yuan Su, Ang-Yu Lu, Chih-Yu Wu, Keng-Ku Liu