Patents by Inventor Kengo Akimoto

Kengo Akimoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8378344
    Abstract: It is an object to provide a light-emitting device in which plural kinds of circuits are formed over one substrate and plural kinds of thin film transistors corresponding to characteristics of the plural kinds of circuits are provided. An inverted coplanar thin film transistor in which an oxide semiconductor layer overlaps with a source electrode layer and a drain electrode layer is used for a pixel, and a channel-etched thin film transistor is used for a driver circuit. A color filter layer is provided between the pixel thin film transistor and a light-emitting element which is electrically connected to the pixel thin film transistor so as to overlap with the light-emitting element.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: February 19, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masayuki Sakakura, Yoshiaki Oikawa, Shunpei Yamazaki, Junichiro Sakata, Masashi Tsubuku, Kengo Akimoto, Miyuki Hosoba
  • Patent number: 8373164
    Abstract: A structure by which electric-field concentration which might occur between a source electrode and a drain electrode in a bottom-gate thin film transistor is relaxed and deterioration of the switching characteristics is suppressed, and a manufacturing method thereof. A bottom-gate thin film transistor in which an oxide semiconductor layer is provided over a source and drain electrodes is manufactured, and angle ?1 of the side surface of the source electrode which is in contact with the oxide semiconductor layer and angle ?2 of the side surface of the drain electrode which is in contact with the oxide semiconductor layer are each set to be greater than or equal to 20° and less than 90°, so that the distance from the top edge to the bottom edge in the side surface of each electrode is increased.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: February 12, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kengo Akimoto, Daisuke Kawae
  • Patent number: 8373443
    Abstract: An object is to apply a transistor using an oxide semiconductor to a logic circuit including an enhancement transistor. The logic circuit includes a depletion transistor 101 and an enhancement transistor 102. The transistors 101 and 102 each include a gate electrode, a gate insulating layer, a first oxide semiconductor layer, a second oxide semiconductor layer, a source electrode, and a drain electrode. The transistor 102 includes a reduction prevention layer provided over a region in the first oxide semiconductor layer between the source electrode and the drain electrode.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: February 12, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Jun Koyama, Kengo Akimoto, Masashi Tsubuku
  • Patent number: 8368072
    Abstract: To achieve promotion of stability of operational function of display device and enlargement of design margin in circuit design, in a display device including a pixel portion having a semiconductor element and a plurality of pixels provided with pixel electrodes connected to the semiconductor element on a substrate, the semiconductor element includes a photosensitive organic resin film as an interlayer insulating film, an inner wall face of a first opening portion provided at the photosensitive organic resin film is covered by a second insulating nitride film, a second opening portion provided at an inorganic insulating film is provided on an inner side of the first opening portion, the semiconductor and a wiring are connected through the first opening portion and the second opening portion and the pixel electrode is provided at a layer on a lower side of an activation layer.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: February 5, 2013
    Assignee: Semiconductor Energy Labratory Co., Ltd.
    Inventors: Masahiko Hayakawa, Satoshi Murakami, Shunpei Yamazaki, Kengo Akimoto
  • Patent number: 8368079
    Abstract: To provide a semiconductor device in which a defect or fault is not generated and a manufacturing method thereof even if a ZnO semiconductor film is used and a ZnO film to which an n-type or p-type impurity is added is used for a source electrode and a drain electrode. The semiconductor device includes a gate insulating film formed by using a silicon oxide film or a silicon oxynitride film over a gate electrode, an Al film or an Al alloy film over the gate insulating film, a ZnO film to which an n-type or p-type impurity is added over the Al film or the Al alloy film, and a ZnO semiconductor film over the ZnO film to which an n-type or p-type impurity is added and the gate insulating film.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: February 5, 2013
    Assignee: Semicondutor Energy Laboratory Co., Ltd.
    Inventor: Kengo Akimoto
  • Patent number: 8368066
    Abstract: A display device including an oxide semiconductor, a protective circuit and the like having appropriate structures and a small occupied area is necessary. The protective circuit is formed using a non-linear element which includes a gate insulating film covering a gate electrode; a first oxide semiconductor layer which is over the gate insulating layer and overlaps with the gate electrode; and a first wiring layer and a second wiring layer each of which is formed by stacking a conductive layer and a second oxide semiconductor layer and whose end portions are over the first oxide semiconductor layer and overlap with the gate electrode. The gate electrode of the non-linear element is connected to a scan line or a signal line, the first wiring layer or the second wiring layer of the non-linear element is directly connected to the gate electrode layer so as to apply potential of the gate electrode.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: February 5, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kengo Akimoto, Shigeki Komori, Hideki Uochi, Tomoya Futamura, Takahiro Kasahara
  • Patent number: 8362693
    Abstract: It is an object of the present invention to provide a reliable display device and a method for manufacturing the display device reducing the number of manufacturing steps, and with higher yield. A display device according to the invention includes a plurality of display elements each having a first electrode, a layer containing an organic compound, and a second electrode. The display device further includes a heat-resistant planarizing film over a substrate having an insulating surface, a first electrode over the heat-resistant, planarizing film, a wiring covering an end portion of the first electrode, a partition wall covering the end portion of first electrode and the wiring, a layer containing an organic compound, and a second electrode over the layer containing an organic compound.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: January 29, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masayuki Sakakura, Masaharu Nagai, Yutaka Matsuda, Kengo Akimoto, Gen Fujii, Tetsuji Yamaguchi
  • Publication number: 20130001545
    Abstract: An object is to increase field effect mobility of a thin film transistor including an oxide semiconductor. Another object is to stabilize electrical characteristics of the thin film transistor. In a thin film transistor including an oxide semiconductor layer, a semiconductor layer or a conductive layer having higher electrical conductivity than the oxide semiconductor is formed over the oxide semiconductor layer, whereby field effect mobility of the thin film transistor can be increased. Further, by forming a semiconductor layer or a conductive layer having higher electrical conductivity than the oxide semiconductor between the oxide semiconductor layer and a protective insulating layer of the thin film transistor, change in composition or deterioration in film quality of the oxide semiconductor layer is prevented, so that electrical characteristics of the thin film transistor can be stabilized.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 3, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hideaki KUWABARA, Kengo AKIMOTO, Toshinari SASAKI
  • Patent number: 8343817
    Abstract: To provide a method by which a semiconductor device including a thin film transistor with excellent electric characteristics and high reliability is manufactured with a small number of steps. After a channel protective layer is formed over an oxide semiconductor film containing In, Ga, and Zn, a film having n-type conductivity and a conductive film are formed, and a resist mask is formed over the conductive film. The conductive film, the film having n-type conductivity, and the oxide semiconductor film containing In, Ga, and Zn are etched using the channel protective layer and gate insulating films as etching stoppers with the resist mask, so that source and drain electrode layers, a buffer layer, and a semiconductor layer are formed.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: January 1, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hidekazu Miyairi, Kengo Akimoto, Yasuo Nakamura
  • Patent number: 8344372
    Abstract: With an increase in the definition of a display device, the number of pixels is increased, and thus the numbers of gate lines and signal lines are increased. The increase in the numbers of gate lines and signal lines makes it difficult to mount an IC chip having a driver circuit for driving the gate line and the signal line by bonding or the like, which causes an increase in manufacturing costs. A pixel portion and a driver circuit driving the pixel portion are provided over the same substrate. The pixel portion and at least a part of the driver circuit are formed using thin film transistors in each of which an oxide semiconductor is used. Both the pixel portion and the driver circuit are provided over the same substrate, whereby manufacturing costs are reduced.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: January 1, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kengo Akimoto, Atsushi Umezaki
  • Patent number: 8344387
    Abstract: An object is, in a thin film transistor in which an oxide semiconductor is used as an active layer, to prevent change in composition, film quality, an interface, or the like of an oxide semiconductor region serving as an active layer, and to stabilize electrical characteristics of the thin film transistor. In a thin film transistor in which a first oxide semiconductor region is used as an active layer, a second oxide semiconductor region having lower electrical conductivity than the first oxide semiconductor region is formed between the first oxide semiconductor region and a protective insulating layer for the thin film transistor, whereby the second oxide semiconductor region serves as a protective layer for the first oxide semiconductor region; thus, change in composition or deterioration in film quality of the first oxide semiconductor region can be prevented, and electrical characteristics of the thin film transistor can be stabilized.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: January 1, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kengo Akimoto, Toshinari Sasaki, Hideaki Kuwabara
  • Patent number: 8334540
    Abstract: The protective circuit is formed using a non-linear element which includes a gate insulating film covering a gate electrode; a first wiring layer and a second wiring layer which are over the gate insulating film and whose end portions overlap with the gate electrode; and an oxide semiconductor layer which is over the gate electrode and in contact with the gate insulating film and the end portions of the first wiring layer and the second wiring layer. The gate electrode of the non-linear element and a scan line or a signal line is included in a wiring, the first or second wiring layer of the non-linear element is directly connected to the wiring so as to apply the potential of the gate electrode.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: December 18, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kengo Akimoto, Shigeki Komori, Hideki Uochi, Tomoya Futamura, Takahiro Kasahara
  • Patent number: 8329506
    Abstract: It is an object to provide an oxide semiconductor which is suitable for use in a semiconductor device. Alternatively, it is another object to provide a semiconductor device using the oxide semiconductor. Provided is a semiconductor device including an In—Ga—Zn—O based oxide semiconductor layer in a channel formation region of a transistor. In the semiconductor device, the In—Ga—Zn—O based oxide semiconductor layer has a structure in which crystal grains represented by InGaO3(ZnO)m (m=1) are included in an amorphous structure represented by InGaO3(ZnO)m (m>0).
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: December 11, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kengo Akimoto, Junichiro Sakata, Takuya Hirohashi, Masahiro Takahashi, Hideyuki Kishida, Akiharu Miyanaga
  • Patent number: 8324621
    Abstract: Disclosed is a highly reliable semiconductor device and a manufacturing method thereof, which is achieved by using a transistor with favorable electrical characteristics and high reliability as a switching element. The semiconductor device includes a driver circuit portion and a pixel portion over one substrate, and the pixel portion comprises a light-transmitting bottom-gate transistor. The light-transmitting bottom-gate transistor comprises: a transparent gate electrode layer; an oxide semiconductor layer over the gate electrode layer, a superficial layer of the oxide semiconductor layer including comprising a microcrystal group of nanocrystals; and source and drain electrode layers formed over the oxide semiconductor layer, the source and drain electrode layers comprising a light-transmitting oxide conductive layer.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: December 4, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Junichiro Sakata, Kengo Akimoto, Kosei Noda
  • Publication number: 20120300150
    Abstract: A protective circuit includes a non-linear element which includes a gate electrode, a gate insulating layer covering the gate electrode, a first oxide semiconductor layer overlapping with the gate electrode over the gate insulating layer, and a first wiring layer and a second wiring layer whose end portions overlap with the gate electrode over the first oxide semiconductor layer and in which a conductive layer and a second oxide semiconductor layer are stacked. Over the gate insulating layer, oxide semiconductor layers with different properties are bonded to each other, whereby stable operation can be performed as compared with Schottky junction. Thus, the junction leakage can be reduced and the characteristics of the non-linear element can be improved.
    Type: Application
    Filed: August 6, 2012
    Publication date: November 29, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Kengo AKIMOTO, Shigeki KOMORI, Hideki UOCHI, Tomoya FUTAMURA, Takahiro KASAHARA
  • Patent number: 8319215
    Abstract: With an increase in the definition of a display device, the number of pixels is increased, and thus the numbers of gate lines and signal lines are increased. Due to the increase in the numbers of gate lines and signal lines, it is difficult to mount an IC chip having a driver circuit for driving the gate and signal lines by bonding or the like, which causes an increase in manufacturing costs. A pixel portion and a driver circuit for driving the pixel portion are formed over one substrate. At least a part of the driver circuit is formed using an inverted staggered thin film transistor in which an oxide semiconductor is used. The driver circuit as well as the pixel portion is provided over the same substrate, whereby manufacturing costs are reduced.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: November 27, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kengo Akimoto, Atsushi Umezaki
  • Patent number: 8318551
    Abstract: A gate electrode layer over a substrate; a gate insulating layer over the gate electrode layer; a first source electrode layer and a first drain electrode layer over the gate insulating layer; an oxide semiconductor layer over the gate insulating layer; and a second source electrode layer and a second drain electrode layer over the oxide semiconductor layer. A first part, a second part, and a third part of a bottom surface are in contact with the first source electrode layer, the first drain electrode layer, and the gate insulating layer respectively. A first part and a second part of the top surface are in contact with the second source electrode layer and the second drain electrode layer respectively. The first source electrode layer and the first drain electrode layer are electrically connected to the second source electrode layer and the second drain electrode layer respectively.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: November 27, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kengo Akimoto, Toshinari Sasaki
  • Patent number: 8319216
    Abstract: It is disclosed that a semiconductor device includes an oxide semiconductor layer provided over a gate insulating layer, a source electrode layer, and a drain electrode layer, in which a thickness of the gate insulating layer located in a region between the source electrode layer and the drain electrode layer is smaller than a thickness of the gate insulating layer provided between the gate electrode layer and at least one of the source electrode layer and the drain electrode layer.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: November 27, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kengo Akimoto, Masashi Tsubuku
  • Patent number: 8313980
    Abstract: Electric characteristics and reliability of a thin film transistor are impaired by diffusion of an impurity element into a channel region. The present invention provides a thin film transistor in which aluminum atoms are unlikely to be diffused to an oxide semiconductor layer. A thin film transistor including an oxide semiconductor layer including indium, gallium, and zinc includes source or drain electrode layers in which first conductive layers including aluminum as a main component and second conductive layers including a high-melting-point metal material are stacked. An oxide semiconductor layer 113 is in contact with the second conductive layers and barrier layers including aluminum oxide as a main component, whereby diffusion of aluminum atoms to the oxide semiconductor layer is suppressed.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: November 20, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Kengo Akimoto
  • Patent number: 8309961
    Abstract: In a channel protected thin film transistor in which a channel formation region is formed using an oxide semiconductor, an oxide semiconductor layer which is dehydrated or dehydrogenated by a heat treatment is used as an active layer, a crystal region including nanocrystals is included in a superficial portion in the channel formation region, and the rest portion is amorphous or is formed of a mixture of amorphousness/non-crystals and microcrystals, where an amorphous region is dotted with microcrystals. By using an oxide semiconductor layer having such a structure, a change to an n-type caused by entry of moisture or elimination of oxygen to or from the superficial portion and generation of a parasitic channel can be prevented and a contact resistance with a source and drain electrodes can be reduced.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: November 13, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masayuki Sakakura, Ryosuke Watanabe, Junichiro Sakata, Kengo Akimoto, Akiharu Miyanaga, Takuya Hirohashi, Hideyuki Kishida